The Stacks Project


Tag 01I6

25.7. Quasi-coherent sheaves on affines

Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules, Definition 17.10.1. In this section we show that any quasi-coherent sheaf on an affine scheme $\mathop{\mathrm{Spec}}(R)$ corresponds to the sheaf $\widetilde M$ associated to an $R$-module $M$.

Lemma 25.7.1. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. Let $M$ be an $R$-module. There exists a canonical isomorphism between the sheaf $\widetilde M$ associated to the $R$-module $M$ (Definition 25.5.3) and the sheaf $\mathcal{F}_M$ associated to the $R$-module $M$ (Modules, Definition 17.10.6). This isomorphism is functorial in $M$. In particular, the sheaves $\widetilde M$ are quasi-coherent. Moreover, they are characterized by the following mapping property $$ \mathop{\mathrm{Hom}}\nolimits_{\mathcal{O}_X}(\widetilde M, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits_R(M, \Gamma(X, \mathcal{F})) $$ for any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$. Here a map $\alpha : \widetilde M \to \mathcal{F}$ corresponds to its effect on global sections.

Proof. By Modules, Lemma 17.10.5 we have a morphism $\mathcal{F}_M \to \widetilde M$ corresponding to the map $M \to \Gamma(X, \widetilde M) = M$. Let $x \in X$ correspond to the prime $\mathfrak p \subset R$. The induced map on stalks are the maps $\mathcal{O}_{X, x} \otimes_R M \to M_{\mathfrak p}$ which are isomorphisms because $R_{\mathfrak p} \otimes_R M = M_{\mathfrak p}$. Hence the map $\mathcal{F}_M \to \widetilde M$ is an isomorphism. The mapping property follows from the mapping property of the sheaves $\mathcal{F}_M$. $\square$

Lemma 25.7.2. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. There are canonical isomorphisms

  1. $ \widetilde{M \otimes_R N} \cong \widetilde M \otimes_{\mathcal{O}_X} \widetilde N $, see Modules, Section 17.15.
  2. $ \widetilde{\text{T}^n(M)} \cong \text{T}^n(\widetilde M) $, $ \widetilde{\text{Sym}^n(M)} \cong \text{Sym}^n(\widetilde M) $, and $ \widetilde{\wedge^n(M)} \cong \wedge^n(\widetilde M) $, see Modules, Section 17.19.
  3. if $M$ is a finitely presented $R$-module, then $ \mathop{\mathcal{H}\!\mathit{om}}\nolimits_{\mathcal{O}_X}(\widetilde M, \widetilde N) \cong \widetilde{\mathop{\mathrm{Hom}}\nolimits_R(M, N)} $, see Modules, Section 17.20.

First proof. By Lemma 25.7.1 to give a map $\widetilde{M \otimes_R N}$ into $\widetilde M \otimes_{\mathcal{O}_X} \widetilde N$ we have to give a map on global sections $M \otimes_R N \to \Gamma(X, \widetilde M \otimes_{\mathcal{O}_X} \widetilde N)$ which exists by definition of the tensor product of sheaves of modules. To see that this map is an isomorphism it suffices to check that it is an isomorphism on stalks. And this follows from the description of the stalks of $\widetilde{M}$ (either in Lemma 25.5.4 or in Modules, Lemma 17.10.5), the fact that tensor product commutes with localization (Algebra, Lemma 10.11.16) and Modules, Lemma 17.15.1.

The proof of (2) is similar, using Algebra, Lemma 10.12.5 and Modules, Lemma 17.19.2.

For (3) note that if $M$ is finitely presented as an $R$-module then $\widetilde M$ has a global finite presentation as an $\mathcal{O}_X$-module. Hence we conclude using Algebra, Lemma 10.10.2 and Modules, Lemma 17.20.3. $\square$

Second proof. Using Lemma 25.7.1 and Modules, Lemma 17.10.5 we see that the functor $M \mapsto \widetilde M$ can be viewed as $\pi^*$ for a morphism $\pi$ of ringed spaces. And pulling back modules commutes with tensor constructions by Modules, Lemmas 17.15.4 and 17.19.3. The morphism $\pi : (X, \mathcal{O}_X) \to (\{*\}, R)$ is flat for example because the stalks of $\mathcal{O}_X$ are localizations of $R$ (Lemma 25.5.4) and hence flat over $R$. Thus pullback by $\pi$ commutes with internal hom if the first module is finitely presented by Modules, Lemma 17.20.4. $\square$

Lemma 25.7.3. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(S), \mathcal{O}_{\mathop{\mathrm{Spec}}(S)})$, $(Y, \mathcal{O}_Y) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be affine schemes. Let $\psi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of affine schemes, corresponding to the ring map $\psi^\sharp : R \to S$ (see Lemma 25.6.5).

  1. We have $\psi^* \widetilde M = \widetilde{S \otimes_R M}$ functorially in the $R$-module $M$.
  2. We have $\psi_* \widetilde N = \widetilde{N_R}$ functorially in the $S$-module $N$.

Proof. The first assertion follows from the identification in Lemma 25.7.1 and the result of Modules, Lemma 17.10.7. The second assertion follows from the fact that $\psi^{-1}(D(f)) = D(\psi^\sharp(f))$ and hence $$ \psi_* \widetilde N(D(f)) = \widetilde N(D(\psi^\sharp(f))) = N_{\psi^\sharp(f)} = (N_R)_f = \widetilde{N_R}(D(f)) $$ as desired. $\square$

Lemma 25.7.3 above says in particular that if you restrict the sheaf $\widetilde M$ to a standard affine open subspace $D(f)$, then you get $\widetilde{M_f}$. We will use this from now on without further mention.

Lemma 25.7.4. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then $\mathcal{F}$ is isomorphic to the sheaf associated to the $R$-module $\Gamma(X, \mathcal{F})$.

Proof. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Since every standard open $D(f)$ is quasi-compact we see that $X$ is a locally quasi-compact, i.e., every point has a fundamental system of quasi-compact neighbourhoods, see Topology, Definition 5.13.1. Hence by Modules, Lemma 17.10.8 for every prime $\mathfrak p \subset R$ corresponding to $x \in X$ there exists an open neighbourhood $x \in U \subset X$ such that $\mathcal{F}|_U$ is isomorphic to the quasi-coherent sheaf associated to some $\mathcal{O}_X(U)$-module $M$. In other words, we get an open covering by $U$'s with this property. By Lemma 25.5.1 for example we can refine this covering to a standard open covering. Thus we get a covering $\mathop{\mathrm{Spec}}(R) = \bigcup D(f_i)$ and $R_{f_i}$-modules $M_i$ and isomorphisms $\varphi_i : \mathcal{F}|_{D(f_i)} \to \mathcal{F}_{M_i}$ for some $R_{f_i}$-module $M_i$. On the overlaps we get isomorphisms $$ \xymatrix{ \mathcal{F}_{M_i}|_{D(f_if_j)} \ar[rr]^{\varphi_i^{-1}|_{D(f_if_j)}} & & \mathcal{F}|_{D(f_if_j)} \ar[rr]^{\varphi_j|_{D(f_if_j)}} & & \mathcal{F}_{M_j}|_{D(f_if_j)}. } $$ Let us denote these $\psi_{ij}$. It is clear that we have the cocycle condition $$ \psi_{jk}|_{D(f_if_jf_k)} \circ \psi_{ij}|_{D(f_if_jf_k)} = \psi_{ik}|_{D(f_if_jf_k)} $$ on triple overlaps.

Recall that each of the open subspaces $D(f_i)$, $D(f_if_j)$, $D(f_if_jf_k)$ is an affine scheme. Hence the sheaves $\mathcal{F}_{M_i}$ are isomorphic to the sheaves $\widetilde M_i$ by Lemma 25.7.1 above. In particular we see that $\mathcal{F}_{M_i}(D(f_if_j)) = (M_i)_{f_j}$, etc. Also by Lemma 25.7.1 above we see that $\psi_{ij}$ corresponds to a unique $R_{f_if_j}$-module isomorphism $$ \psi_{ij} : (M_i)_{f_j} \longrightarrow (M_j)_{f_i} $$ namely, the effect of $\psi_{ij}$ on sections over $D(f_if_j)$. Moreover these then satisfy the cocycle condition that $$ \xymatrix{ (M_i)_{f_jf_k} \ar[rd]_{\psi_{ij}} \ar[rr]^{\psi_{ik}} & & (M_k)_{f_if_j} \\ & (M_j)_{f_if_k} \ar[ru]_{\psi_{jk}} } $$ commutes (for any triple $i, j, k$).

Now Algebra, Lemma 10.23.4 shows that there exist an $R$-module $M$ such that $M_i = M_{f_i}$ compatible with the morphisms $\psi_{ij}$. Consider $\mathcal{F}_M = \widetilde M$. At this point it is a formality to show that $\widetilde M$ is isomorphic to the quasi-coherent sheaf $\mathcal{F}$ we started out with. Namely, the sheaves $\mathcal{F}$ and $\widetilde M$ give rise to isomorphic sets of glueing data of sheaves of $\mathcal{O}_X$-modules with respect to the covering $X = \bigcup D(f_i)$, see Sheaves, Section 6.33 and in particular Lemma 6.33.4. Explicitly, in the current situation, this boils down to the following argument: Let us construct an $R$-module map $$ M \longrightarrow \Gamma(X, \mathcal{F}). $$ Namely, given $m \in M$ we get $m_i = m/1 \in M_{f_i} = M_i$ by construction of $M$. By construction of $M_i$ this corresponds to a section $s_i \in \mathcal{F}(U_i)$. (Namely, $\varphi^{-1}_i(m_i)$.) We claim that $s_i|_{D(f_if_j)} = s_j|_{D(f_if_j)}$. This is true because, by construction of $M$, we have $\psi_{ij}(m_i) = m_j$, and by the construction of the $\psi_{ij}$. By the sheaf condition of $\mathcal{F}$ this collection of sections gives rise to a unique section $s$ of $\mathcal{F}$ over $X$. We leave it to the reader to show that $m \mapsto s$ is a $R$-module map. By Lemma 25.7.1 we obtain an associated $\mathcal{O}_X$-module map $$ \widetilde M \longrightarrow \mathcal{F}. $$ By construction this map reduces to the isomorphisms $\varphi_i^{-1}$ on each $D(f_i)$ and hence is an isomorphism. $\square$

Lemma 25.7.5. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. The functors $M \mapsto \widetilde M$ and $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$ define quasi-inverse equivalences of categories $$ \xymatrix{ \mathit{QCoh}(\mathcal{O}_X) \ar@<1ex>[r] & \text{Mod-}R \ar@<1ex>[l] } $$ between the category of quasi-coherent $\mathcal{O}_X$-modules and the category of $R$-modules.

Proof. See Lemmas 25.7.1 and 25.7.4 above. $\square$

From now on we will not distinguish between quasi-coherent sheaves on affine schemes and sheaves of the form $\widetilde M$.

Lemma 25.7.6. Let $X = \mathop{\mathrm{Spec}}(R)$ be an affine scheme. Kernels and cokernels of maps of quasi-coherent $\mathcal{O}_X$-modules are quasi-coherent.

Proof. This follows from the exactness of the functor $\widetilde{ }$ since by Lemma 25.7.1 we know that any map $\psi : \widetilde{M} \to \widetilde{N}$ comes from an $R$-module map $\varphi : M \to N$. (So we have $\mathop{\mathrm{Ker}}(\psi) = \widetilde{\mathop{\mathrm{Ker}}(\varphi)}$ and $\mathop{\mathrm{Coker}}(\psi) = \widetilde{\mathop{\mathrm{Coker}}(\varphi)}$.) $\square$

Lemma 25.7.7. Let $X = \mathop{\mathrm{Spec}}(R)$ be an affine scheme. The direct sum of an arbitrary collection of quasi-coherent sheaves on $X$ is quasi-coherent. The same holds for colimits.

Proof. Suppose $\mathcal{F}_i$, $i \in I$ is a collection of quasi-coherent sheaves on $X$. By Lemma 25.7.5 above we can write $\mathcal{F}_i = \widetilde{M_i}$ for some $R$-module $M_i$. Set $M = \bigoplus M_i$. Consider the sheaf $\widetilde{M}$. For each standard open $D(f)$ we have $$ \widetilde{M}(D(f)) = M_f = \left(\bigoplus M_i\right)_f = \bigoplus M_{i, f}. $$ Hence we see that the quasi-coherent $\mathcal{O}_X$-module $\widetilde{M}$ is the direct sum of the sheaves $\mathcal{F}_i$. A similar argument works for general colimits. $\square$

Lemma 25.7.8. Let $(X, \mathcal{O}_X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. Suppose that $$ 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 $$ is a short exact sequence of sheaves $\mathcal{O}_X$-modules. If two out of three are quasi-coherent then so is the third.

Proof. This is clear in case both $\mathcal{F}_1$ and $\mathcal{F}_2$ are quasi-coherent because the functor $M \mapsto \widetilde M$ is exact, see Lemma 25.5.4. Similarly in case both $\mathcal{F}_2$ and $\mathcal{F}_3$ are quasi-coherent. Now, suppose that $\mathcal{F}_1 = \widetilde M_1$ and $\mathcal{F}_3 = \widetilde M_3$ are quasi-coherent. Set $M_2 = \Gamma(X, \mathcal{F}_2)$. We claim it suffices to show that the sequence $$ 0 \to M_1 \to M_2 \to M_3 \to 0 $$ is exact. Namely, if this is the case, then (by using the mapping property of Lemma 25.7.1) we get a commutative diagram $$ \xymatrix{ 0 \ar[r] & \widetilde M_1 \ar[r] \ar[d] & \widetilde M_2 \ar[r] \ar[d] & \widetilde M_3 \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{F}_1 \ar[r] & \mathcal{F}_2 \ar[r] & \mathcal{F}_3 \ar[r] & 0 } $$ and we win by the snake lemma.

The ''correct'' argument here would be to show first that $H^1(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf $\mathcal{F}$. This is actually not all that hard, but it is perhaps better to postpone this till later. Instead we use a small trick.

Pick $m \in M_3 = \Gamma(X, \mathcal{F}_3)$. Consider the following set $$ I = \{ f \in R \mid \text{the element }fm\text{ comes from }M_2\}. $$ Clearly this is an ideal. It suffices to show $1 \in I$. Hence it suffices to show that for any prime $\mathfrak p$ there exists an $f \in I$, $f \not\in \mathfrak p$. Let $x \in X$ be the point corresponding to $\mathfrak p$. Because surjectivity can be checked on stalks there exists an open neighbourhood $U$ of $x$ such that $m|_U$ comes from a local section $s \in \mathcal{F}_2(U)$. In fact we may assume that $U = D(f)$ is a standard open, i.e., $f \in R$, $f \not \in \mathfrak p$. We will show that for some $N \gg 0$ we have $f^N \in I$, which will finish the proof.

Take any point $z \in V(f)$, say corresponding to the prime $\mathfrak q \subset R$. We can also find a $g \in R$, $g \not \in \mathfrak q$ such that $m|_{D(g)}$ lifts to some $s' \in \mathcal{F}_2(D(g))$. Consider the difference $s|_{D(fg)} - s'|_{D(fg)}$. This is an element $m'$ of $\mathcal{F}_1(D(fg)) = (M_1)_{fg}$. For some integer $n = n(z)$ the element $f^n m'$ comes from some $m'_1 \in (M_1)_g$. We see that $f^n s$ extends to a section $\sigma$ of $\mathcal{F}_2$ on $D(f) \cup D(g)$ because it agrees with the restriction of $f^n s' + m'_1$ on $D(f) \cap D(g) = D(fg)$. Moreover, $\sigma$ maps to the restriction of $f^n m$ to $D(f) \cup D(g)$.

Since $V(f)$ is quasi-compact, there exists a finite list of elements $g_1, \ldots, g_m \in R$ such that $V(f) \subset \bigcup D(g_j)$, an integer $n > 0$ and sections $\sigma_j \in \mathcal{F}_2(D(f) \cup D(g_j))$ such that $\sigma_j|_{D(f)} = f^n s$ and $\sigma_j$ maps to the section $f^nm|_{D(f) \cup D(g_j)}$ of $\mathcal{F}_3$. Consider the differences $$ \sigma_j|_{D(f) \cup D(g_jg_k)} - \sigma_k|_{D(f) \cup D(g_jg_k)}. $$ These correspond to sections of $\mathcal{F}_1$ over $D(f) \cup D(g_jg_k)$ which are zero on $D(f)$. In particular their images in $\mathcal{F}_1(D(g_jg_k)) = (M_1)_{g_jg_k}$ are zero in $(M_1)_{g_jg_kf}$. Thus some high power of $f$ kills each and every one of these. In other words, the elements $f^N \sigma_j$, for some $N \gg 0$ satisfy the glueing condition of the sheaf property and give rise to a section $\sigma $ of $\mathcal{F}_2$ over $\bigcup (D(f) \cup D(g_j)) = X$ as desired. $\square$

    The code snippet corresponding to this tag is a part of the file schemes.tex and is located in lines 1063–1526 (see updates for more information).

    \section{Quasi-coherent sheaves on affines}
    \label{section-quasi-coherent-affine}
    
    \noindent
    Recall that we have defined the abstract notion of a quasi-coherent
    sheaf in Modules, Definition \ref{modules-definition-quasi-coherent}.
    In this section we show that any quasi-coherent sheaf on an affine
    scheme $\Spec(R)$ corresponds to the sheaf $\widetilde M$ associated to
    an $R$-module $M$.
    
    \begin{lemma}
    \label{lemma-compare-constructions}
    Let $(X, \mathcal{O}_X) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be an affine scheme. Let $M$ be an $R$-module. There exists a canonical
    isomorphism between the sheaf $\widetilde M$ associated to the $R$-module
    $M$ (Definition \ref{definition-structure-sheaf}) and the sheaf
    $\mathcal{F}_M$ associated to the $R$-module $M$
    (Modules, Definition \ref{modules-definition-sheaf-associated}).
    This isomorphism is functorial in $M$. In particular,
    the sheaves $\widetilde M$ are quasi-coherent. Moreover, they
    are characterized by the following mapping property
    $$
    \Hom_{\mathcal{O}_X}(\widetilde M, \mathcal{F})
    =
    \Hom_R(M, \Gamma(X, \mathcal{F}))
    $$
    for any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$.
    Here a map $\alpha : \widetilde M \to \mathcal{F}$ corresponds
    to its effect on global sections.
    \end{lemma}
    
    \begin{proof}
    By Modules, Lemma \ref{modules-lemma-construct-quasi-coherent-sheaves}
    we have a morphism $\mathcal{F}_M \to \widetilde M$ corresponding
    to the map $M \to \Gamma(X, \widetilde M) = M$. Let $x \in X$
    correspond to the prime $\mathfrak p \subset R$.
    The induced map on stalks are the maps
    $\mathcal{O}_{X, x} \otimes_R M \to M_{\mathfrak p}$
    which are isomorphisms because
    $R_{\mathfrak p} \otimes_R M = M_{\mathfrak p}$.
    Hence the map $\mathcal{F}_M \to \widetilde M$ is an isomorphism.
    The mapping property follows from the mapping property of
    the sheaves $\mathcal{F}_M$.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-widetilde-constructions}
    Let $(X, \mathcal{O}_X) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be an affine scheme. There are canonical isomorphisms
    \begin{enumerate}
    \item
    $
    \widetilde{M \otimes_R N}
    \cong
    \widetilde M \otimes_{\mathcal{O}_X} \widetilde N
    $,
    see Modules, Section \ref{modules-section-tensor-product}.
    \item
    $
    \widetilde{\text{T}^n(M)}
    \cong
    \text{T}^n(\widetilde M)
    $,
    $
    \widetilde{\text{Sym}^n(M)}
    \cong
    \text{Sym}^n(\widetilde M)
    $, and
    $
    \widetilde{\wedge^n(M)}
    \cong
    \wedge^n(\widetilde M)
    $,
    see
    Modules, Section \ref{modules-section-symmetric-exterior}.
    \item if $M$ is a finitely presented $R$-module, then
    $
    \SheafHom_{\mathcal{O}_X}(\widetilde M, \widetilde N)
    \cong
    \widetilde{\Hom_R(M,  N)}
    $,
    see
    Modules, Section \ref{modules-section-internal-hom}.
    \end{enumerate}
    \end{lemma}
    
    \begin{proof}[First proof]
    By Lemma \ref{lemma-compare-constructions} to give a map
    $\widetilde{M \otimes_R N}$ into
    $\widetilde M \otimes_{\mathcal{O}_X} \widetilde N$
    we have to give a map on global sections
    $M \otimes_R N \to
    \Gamma(X, \widetilde M \otimes_{\mathcal{O}_X} \widetilde N)$
    which exists by definition of the tensor product of sheaves
    of modules. To see that this map is an isomorphism it
    suffices to check that it is an isomorphism on stalks.
    And this follows from the description of the stalks
    of $\widetilde{M}$ (either in Lemma \ref{lemma-spec-sheaves} or in
    Modules, Lemma \ref{modules-lemma-construct-quasi-coherent-sheaves}),
    the fact that tensor product commutes with localization
    (Algebra, Lemma \ref{algebra-lemma-tensor-product-localization}) and
    Modules, Lemma \ref{modules-lemma-stalk-tensor-product}.
    
    \medskip\noindent
    The proof of (2) is similar, using
    Algebra, Lemma \ref{algebra-lemma-tensor-algebra-localization} and
    Modules, Lemma \ref{modules-lemma-stalk-tensor-algebra}.
    
    \medskip\noindent
    For (3) note that if $M$ is finitely presented as an $R$-module
    then $\widetilde M$ has a global finite presentation as an
    $\mathcal{O}_X$-module. Hence we conclude using
    Algebra, Lemma \ref{algebra-lemma-hom-from-finitely-presented} and
    Modules, Lemma \ref{modules-lemma-stalk-internal-hom}.
    \end{proof}
    
    \begin{proof}[Second proof]
    Using Lemma \ref{lemma-compare-constructions} and
    Modules, Lemma \ref{modules-lemma-construct-quasi-coherent-sheaves}
    we see that the functor $M \mapsto \widetilde M$ can be viewed
    as $\pi^*$ for a morphism $\pi$ of ringed spaces.
    And pulling back modules commutes with tensor constructions by
    Modules, Lemmas \ref{modules-lemma-tensor-product-pullback}
    and \ref{modules-lemma-pullback-tensor-algebra}.
    The morphism $\pi : (X, \mathcal{O}_X) \to (\{*\}, R)$ is
    flat for example because the stalks of $\mathcal{O}_X$ are
    localizations of $R$ (Lemma \ref{lemma-spec-sheaves})
    and hence flat over $R$. Thus pullback by $\pi$ commutes
    with internal hom if the first module is finitely presented by
    Modules, Lemma \ref{modules-lemma-pullback-internal-hom}.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-widetilde-pullback}
    Let
    $(X, \mathcal{O}_X) = (\Spec(S), \mathcal{O}_{\Spec(S)})$,
    $(Y, \mathcal{O}_Y) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be affine schemes.
    Let $\psi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a
    morphism of affine schemes, corresponding to the ring map
    $\psi^\sharp : R \to S$ (see Lemma \ref{lemma-category-affine-schemes}).
    \begin{enumerate}
    \item We have $\psi^* \widetilde M = \widetilde{S \otimes_R M}$
    functorially in the $R$-module $M$.
    \item We have $\psi_* \widetilde N = \widetilde{N_R}$ functorially
    in the $S$-module $N$.
    \end{enumerate}
    \end{lemma}
    
    \begin{proof}
    The first assertion follows from the identification in
    Lemma \ref{lemma-compare-constructions}
    and the result of Modules, Lemma \ref{modules-lemma-restrict-quasi-coherent}.
    The second assertion follows from the fact
    that $\psi^{-1}(D(f)) = D(\psi^\sharp(f))$ and hence
    $$
    \psi_* \widetilde N(D(f)) = \widetilde N(D(\psi^\sharp(f))) =
    N_{\psi^\sharp(f)} = (N_R)_f = \widetilde{N_R}(D(f))
    $$
    as desired.
    \end{proof}
    
    \noindent
    Lemma \ref{lemma-widetilde-pullback} above says in particular
    that if you restrict
    the sheaf $\widetilde M$ to a standard affine open subspace
    $D(f)$, then you get $\widetilde{M_f}$. We will use this from
    now on without further mention.
    
    \begin{lemma}
    \label{lemma-quasi-coherent-affine}
    Let $(X, \mathcal{O}_X) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be an affine scheme. Let $\mathcal{F}$ be a
    quasi-coherent $\mathcal{O}_X$-module. Then
    $\mathcal{F}$ is isomorphic to the sheaf associated to
    the $R$-module $\Gamma(X, \mathcal{F})$.
    \end{lemma}
    
    \begin{proof}
    Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
    Since every standard open $D(f)$ is quasi-compact we see that
    $X$ is a locally quasi-compact, i.e., every point has a fundamental
    system of quasi-compact neighbourhoods, see Topology,
    Definition \ref{topology-definition-locally-quasi-compact}.
    Hence by Modules, Lemma \ref{modules-lemma-quasi-coherent-module}
    for every prime $\mathfrak p \subset R$ corresponding to $x \in X$
    there exists an open neighbourhood $x \in U \subset X$ such that
    $\mathcal{F}|_U$ is isomorphic to the quasi-coherent
    sheaf associated to some $\mathcal{O}_X(U)$-module $M$.
    In other words, we get an open covering by $U$'s with this property.
    By Lemma \ref{lemma-standard-open} for example we can refine this
    covering to  a standard open covering.
    Thus we get a covering $\Spec(R) = \bigcup D(f_i)$
    and $R_{f_i}$-modules $M_i$ and isomorphisms
    $\varphi_i : \mathcal{F}|_{D(f_i)} \to \mathcal{F}_{M_i}$
    for some $R_{f_i}$-module $M_i$. On the overlaps
    we get isomorphisms
    $$
    \xymatrix{
    \mathcal{F}_{M_i}|_{D(f_if_j)}
    \ar[rr]^{\varphi_i^{-1}|_{D(f_if_j)}}
    & &
    \mathcal{F}|_{D(f_if_j)}
    \ar[rr]^{\varphi_j|_{D(f_if_j)}}
    & &
    \mathcal{F}_{M_j}|_{D(f_if_j)}.
    }
    $$
    Let us denote these $\psi_{ij}$. It is clear that
    we have the cocycle condition
    $$
    \psi_{jk}|_{D(f_if_jf_k)}
    \circ
    \psi_{ij}|_{D(f_if_jf_k)}
    =
    \psi_{ik}|_{D(f_if_jf_k)}
    $$
    on triple overlaps.
    
    \medskip\noindent
    Recall that each of the open subspaces $D(f_i)$, $D(f_if_j)$,
    $D(f_if_jf_k)$ is an affine scheme. Hence the sheaves $\mathcal{F}_{M_i}$
    are isomorphic to the sheaves $\widetilde M_i$ by Lemma
    \ref{lemma-compare-constructions} above. In particular we see that
    $\mathcal{F}_{M_i}(D(f_if_j)) = (M_i)_{f_j}$, etc.
    Also by Lemma \ref{lemma-compare-constructions} above we see
    that $\psi_{ij}$ corresponds to a unique $R_{f_if_j}$-module isomorphism
    $$
    \psi_{ij} : (M_i)_{f_j} \longrightarrow (M_j)_{f_i}
    $$
    namely, the effect of $\psi_{ij}$ on sections over $D(f_if_j)$.
    Moreover these then satisfy the cocycle condition that
    $$
    \xymatrix{
    (M_i)_{f_jf_k}
    \ar[rd]_{\psi_{ij}}
    \ar[rr]^{\psi_{ik}}
    & &
    (M_k)_{f_if_j} \\
    &
    (M_j)_{f_if_k} \ar[ru]_{\psi_{jk}}
    }
    $$
    commutes (for any triple $i, j, k$).
    
    \medskip\noindent
    Now Algebra, Lemma \ref{algebra-lemma-glue-modules}
    shows that there exist an $R$-module $M$ such that
    $M_i = M_{f_i}$ compatible with the morphisms $\psi_{ij}$.
    Consider $\mathcal{F}_M = \widetilde M$. At this point it is
    a formality to show that $\widetilde M$ is isomorphic to
    the quasi-coherent sheaf $\mathcal{F}$ we started out with.
    Namely, the sheaves $\mathcal{F}$ and $\widetilde M$ give
    rise to isomorphic sets of glueing data of sheaves of $\mathcal{O}_X$-modules
    with respect to the covering $X = \bigcup D(f_i)$, see
    Sheaves, Section \ref{sheaves-section-glueing-sheaves}
    and in particular Lemma \ref{sheaves-lemma-mapping-property-glue}.
    Explicitly, in the current situation, this boils down to
    the following argument: Let us construct an $R$-module map
    $$
    M \longrightarrow \Gamma(X, \mathcal{F}).
    $$
    Namely, given $m \in M$ we get $m_i = m/1 \in M_{f_i} = M_i$
    by construction of $M$. By construction of $M_i$ this corresponds
    to a section $s_i \in \mathcal{F}(U_i)$. (Namely, $\varphi^{-1}_i(m_i)$.)
    We claim that $s_i|_{D(f_if_j)} = s_j|_{D(f_if_j)}$. This is
    true because, by construction of $M$, we have $\psi_{ij}(m_i) = m_j$,
    and by the construction of the $\psi_{ij}$. By the sheaf condition of
    $\mathcal{F}$ this collection of sections gives rise to a unique
    section $s$ of $\mathcal{F}$ over $X$. We leave it to the reader
    to show that $m \mapsto s$ is a $R$-module map.
    By Lemma \ref{lemma-compare-constructions} we obtain an associated
    $\mathcal{O}_X$-module map
    $$
    \widetilde M \longrightarrow \mathcal{F}.
    $$
    By construction this map reduces to the isomorphisms
    $\varphi_i^{-1}$ on each $D(f_i)$ and hence is an isomorphism.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-equivalence-quasi-coherent}
    Let $(X, \mathcal{O}_X) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be an affine scheme.
    The functors $M \mapsto \widetilde M$ and
    $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$ define quasi-inverse
    equivalences of categories
    $$
    \xymatrix{
    \QCoh(\mathcal{O}_X)
    \ar@<1ex>[r]
    &
    \text{Mod-}R
    \ar@<1ex>[l]
    }
    $$
    between the category of quasi-coherent $\mathcal{O}_X$-modules
    and the category of $R$-modules.
    \end{lemma}
    
    \begin{proof}
    See Lemmas \ref{lemma-compare-constructions}
    and \ref{lemma-quasi-coherent-affine} above.
    \end{proof}
    
    \noindent
    From now on we will not distinguish between quasi-coherent
    sheaves on affine schemes and sheaves of the form $\widetilde M$.
    
    \begin{lemma}
    \label{lemma-kernel-cokernel-quasi-coherent}
    Let $X = \Spec(R)$ be an affine scheme.
    Kernels and cokernels of maps of quasi-coherent
    $\mathcal{O}_X$-modules are quasi-coherent.
    \end{lemma}
    
    \begin{proof}
    This follows from the exactness of the functor $\widetilde{\ }$
    since by Lemma \ref{lemma-compare-constructions} we know that any map
    $\psi : \widetilde{M} \to \widetilde{N}$ comes from
    an $R$-module map $\varphi : M \to N$. (So we have
    $\Ker(\psi) = \widetilde{\Ker(\varphi)}$ and
    $\Coker(\psi) = \widetilde{\Coker(\varphi)}$.)
    \end{proof}
    
    \begin{lemma}
    \label{lemma-colimit-quasi-coherent}
    Let $X = \Spec(R)$ be an affine scheme.
    The direct sum of an arbitrary collection of quasi-coherent sheaves
    on $X$ is quasi-coherent. The same holds for colimits.
    \end{lemma}
    
    \begin{proof}
    Suppose $\mathcal{F}_i$, $i \in I$ is a collection of quasi-coherent
    sheaves on $X$. By Lemma \ref{lemma-equivalence-quasi-coherent}
    above we can write $\mathcal{F}_i = \widetilde{M_i}$ for some $R$-module
    $M_i$. Set $M = \bigoplus M_i$. Consider the sheaf $\widetilde{M}$.
    For each standard open $D(f)$ we have
    $$
    \widetilde{M}(D(f)) = M_f =
    \left(\bigoplus M_i\right)_f =
    \bigoplus M_{i, f}.
    $$
    Hence we see that the quasi-coherent $\mathcal{O}_X$-module
    $\widetilde{M}$ is the direct sum of the sheaves $\mathcal{F}_i$.
    A similar argument works for general colimits.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-extension-quasi-coherent}
    Let $(X, \mathcal{O}_X) = (\Spec(R), \mathcal{O}_{\Spec(R)})$
    be an affine scheme. Suppose that
    $$
    0 \to
    \mathcal{F}_1 \to
    \mathcal{F}_2 \to
    \mathcal{F}_3 \to
    0
    $$
    is a short exact sequence of sheaves $\mathcal{O}_X$-modules.
    If two out of three are quasi-coherent then so is the third.
    \end{lemma}
    
    \begin{proof}
    This is clear in case both $\mathcal{F}_1$ and $\mathcal{F}_2$ are
    quasi-coherent because the functor $M \mapsto \widetilde M$
    is exact, see Lemma \ref{lemma-spec-sheaves}.
    Similarly in case both $\mathcal{F}_2$ and $\mathcal{F}_3$ are
    quasi-coherent. Now, suppose that $\mathcal{F}_1 = \widetilde M_1$ and
    $\mathcal{F}_3 = \widetilde M_3$ are quasi-coherent.
    Set $M_2 = \Gamma(X, \mathcal{F}_2)$. We claim it suffices to show that
    the sequence
    $$
    0 \to M_1 \to M_2 \to M_3 \to 0
    $$
    is exact. Namely, if this is the case, then (by using the mapping
    property of Lemma \ref{lemma-compare-constructions}) we get a commutative
    diagram
    $$
    \xymatrix{
    0 \ar[r] &
    \widetilde M_1 \ar[r] \ar[d] &
    \widetilde M_2 \ar[r] \ar[d] &
    \widetilde M_3 \ar[r] \ar[d] &
    0 \\
    0 \ar[r] &
    \mathcal{F}_1 \ar[r] &
    \mathcal{F}_2 \ar[r] &
    \mathcal{F}_3 \ar[r] &
    0
    }
    $$
    and we win by the snake lemma.
    
    \medskip\noindent
    The ``correct'' argument here would be to show first
    that $H^1(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf $\mathcal{F}$.
    This is actually not all that hard, but it is perhaps better to postpone
    this till later. Instead we use a small trick.
    
    \medskip\noindent
    Pick $m \in M_3 = \Gamma(X, \mathcal{F}_3)$.
    Consider the following set
    $$
    I = \{ f \in R \mid \text{the element }fm\text{ comes from }M_2\}.
    $$
    Clearly this is an ideal. It suffices to show $1 \in I$.
    Hence it suffices to show that for any prime $\mathfrak p$
    there exists an $f \in I$, $f \not\in \mathfrak p$.
    Let $x \in X$ be the point corresponding to $\mathfrak p$.
    Because surjectivity can be checked on stalks
    there exists an open neighbourhood $U$ of $x$ such that
    $m|_U$ comes from a local section $s \in \mathcal{F}_2(U)$.
    In fact we may assume that $U = D(f)$ is a standard open,
    i.e., $f \in R$, $f \not \in \mathfrak p$. We will show
    that for some $N \gg 0$ we have $f^N \in I$, which
    will finish the proof.
    
    \medskip\noindent
    Take any point $z \in V(f)$, say corresponding to the
    prime $\mathfrak q \subset R$. We can also find a $g \in R$,
    $g \not \in \mathfrak q$ such that $m|_{D(g)}$ lifts
    to some $s' \in \mathcal{F}_2(D(g))$.
    Consider the difference $s|_{D(fg)} - s'|_{D(fg)}$.
    This is an element $m'$ of $\mathcal{F}_1(D(fg)) = (M_1)_{fg}$.
    For some integer $n = n(z)$ the element $f^n m'$ comes
    from some $m'_1 \in (M_1)_g$. We see that
    $f^n s$ extends to a section $\sigma$ of $\mathcal{F}_2$ on $D(f) \cup D(g)$
    because it agrees with the restriction of
    $f^n s' + m'_1$ on $D(f) \cap D(g) = D(fg)$.
    Moreover, $\sigma$ maps to the restriction of $f^n m$
    to $D(f) \cup D(g)$.
    
    \medskip\noindent
    Since $V(f)$ is quasi-compact, there exists a finite list
    of elements $g_1, \ldots, g_m \in R$ such that
    $V(f) \subset \bigcup D(g_j)$, an integer $n > 0$ and sections
    $\sigma_j \in \mathcal{F}_2(D(f) \cup D(g_j))$ such that
    $\sigma_j|_{D(f)} = f^n s$ and $\sigma_j$ maps to the section
    $f^nm|_{D(f) \cup D(g_j)}$ of $\mathcal{F}_3$.
    Consider the differences
    $$
    \sigma_j|_{D(f) \cup D(g_jg_k)}
    -
    \sigma_k|_{D(f) \cup D(g_jg_k)}.
    $$
    These correspond to sections of $\mathcal{F}_1$
    over $D(f) \cup D(g_jg_k)$ which are zero
    on $D(f)$. In particular their images in
    $\mathcal{F}_1(D(g_jg_k)) = (M_1)_{g_jg_k}$
    are zero in $(M_1)_{g_jg_kf}$.
    Thus some high power of $f$ kills each and every one of these.
    In other words, the elements $f^N \sigma_j$, for some $N \gg 0$
    satisfy the glueing condition of the sheaf property and
    give rise to a section $\sigma $ of $\mathcal{F}_2$
    over $\bigcup (D(f) \cup D(g_j)) = X$ as desired.
    \end{proof}

    Comments (0)

    There are no comments yet for this tag.

    Add a comment on tag 01I6

    Your email address will not be published. Required fields are marked.

    In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

    All contributions are licensed under the GNU Free Documentation License.




    In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this where tag 0321 you just have to write 0321. Beware of the difference between the letter 'O' and the digit 0.

    This captcha seems more appropriate than the usual illegible gibberish, right?