Lemma 17.22.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ be $\mathcal{O}_ X$-modules. There is a canonical isomorphism

$\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X} (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{H}))$

which is functorial in all three entries (sheaf Hom in all three spots). In particular, to give a morphism $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{H}$ is the same as giving a morphism $\mathcal{F} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{H})$.

Proof. This is the analogue of Algebra, Lemma 10.12.8. The proof is the same, and is omitted. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).