Lemma 17.22.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ be $\mathcal{O}_ X$-modules. There is a canonical isomorphism

which is functorial in all three entries (sheaf Hom in all three spots). In particular, to give a morphism $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{H}$ is the same as giving a morphism $\mathcal{F} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{H})$.

## Comments (0)