Lemma 26.5.1. Let R be a ring. Let f \in R.
If g\in R and D(g) \subset D(f), then
f is invertible in R_ g,
g^ e = af for some e \geq 1 and a \in R,
there is a canonical ring map R_ f \to R_ g, and
there is a canonical R_ f-module map M_ f \to M_ g for any R-module M.
Any open covering of D(f) can be refined to a finite open covering of the form D(f) = \bigcup _{i = 1}^ n D(g_ i).
If g_1, \ldots , g_ n \in R, then D(f) \subset \bigcup D(g_ i) if and only if g_1, \ldots , g_ n generate the unit ideal in R_ f.
Comments (0)