Definition 26.5.2. Let R be a ring.
A standard open covering of \mathop{\mathrm{Spec}}(R) is a covering \mathop{\mathrm{Spec}}(R) = \bigcup _{i = 1}^ n D(f_ i), where f_1, \ldots , f_ n \in R.
Suppose that D(f) \subset \mathop{\mathrm{Spec}}(R) is a standard open. A standard open covering of D(f) is a covering D(f) = \bigcup _{i = 1}^ n D(g_ i), where g_1, \ldots , g_ n \in R.
Comments (0)