The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.23.5. Let $R$ be a ring. Let $f_1, \ldots , f_ n \in R$. Suppose we are given the following data:

  1. For each $i$ an $R_{f_ i}$-module $M_ i$.

  2. For each pair $i, j$ an $R_{f_ if_ j}$-module isomorphism $\psi _{ij} : (M_ i)_{f_ j} \to (M_ j)_{f_ i}$.

which satisfy the “cocycle condition” that all the diagrams

\[ \xymatrix{ (M_ i)_{f_ jf_ k} \ar[rd]_{\psi _{ij}} \ar[rr]^{\psi _{ik}} & & (M_ k)_{f_ if_ j} \\ & (M_ j)_{f_ if_ k} \ar[ru]_{\psi _{jk}} } \]

commute (for all triples $i, j, k$). Given this data define

\[ M = \mathop{\mathrm{Ker}}\left( \bigoplus \nolimits _{1 \leq i \leq n} M_ i \longrightarrow \bigoplus \nolimits _{1 \leq i, j \leq n} (M_ i)_{f_ j} \right) \]

where $(m_1, \ldots , m_ n)$ maps to the element whose $(i, j)$th entry is $m_ i/1 - \psi _{ji}(m_ j/1)$. Then the natural map $M \to M_ i$ induces an isorphism $M_{f_ i} \to M_ i$. Moreover $\psi _{ij}(m/1) = m/1$ for all $m \in M$ (with obvious notation).

Proof. To show that $M_{f_1} \to M_1$ is an isomorphism, it suffices to show that its localization at every prime $\mathfrak p'$ of $R_{f_1}$ is an isomorphism, see Lemma 10.22.1. Write $\mathfrak p' = \mathfrak p R_{f_1}$ for some prime $\mathfrak p \subset R$, $f_1 \not\in \mathfrak p$, see Lemma 10.16.6. Since localization is exact (Proposition 10.9.12), we see that

\begin{align*} (M_{f_1})_{\mathfrak p'} & = M_\mathfrak p \\ & = \mathop{\mathrm{Ker}}\left( \bigoplus \nolimits _{1 \leq i \leq n} M_{i, \mathfrak p} \longrightarrow \bigoplus \nolimits _{1 \leq i, j \leq n} ((M_ i)_{f_ j})_\mathfrak p \right) \\ & = \mathop{\mathrm{Ker}}\left( \bigoplus \nolimits _{1 \leq i \leq n} M_{i, \mathfrak p} \longrightarrow \bigoplus \nolimits _{1 \leq i, j \leq n} (M_{i, \mathfrak p})_{f_ j} \right) \end{align*}

Here we also used Proposition 10.9.11. Since $f_1$ is a unit in $R_\mathfrak p$, this reduces us to the case where $f_1 = 1$ by replacing $R$ by $R_\mathfrak p$, $f_ i$ by the image of $f_ i$ in $R_\mathfrak p$, $M$ by $M_\mathfrak p$, and $f_1$ by $1$.

Assume $f_1 = 1$. Then $\psi _{1j} : (M_1)_{f_ j} \to M_ j$ is an isomorphism for $j = 2, \ldots , n$. If we use these isomorphisms to identify $M_ j = (M_1)_{f_ j}$, then we see that $\psi _{ij} : (M_1)_{f_ if_ j} \to (M_1)_{f_ if_ j}$ is the canonical identification. Thus the complex

\[ 0 \to M_1 \to \bigoplus \nolimits _{1 \leq i \leq n} (M_1)_{f_ i} \longrightarrow \bigoplus \nolimits _{1 \leq i, j \leq n} (M_1)_{f_ if_ j} \]

is exact by Lemma 10.23.1. Thus the first map identifies $M_1$ with $M$ in this case and everything is clear. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00EQ. Beware of the difference between the letter 'O' and the digit '0'.