Lemma 26.7.7. Let $X = \mathop{\mathrm{Spec}}(R)$ be an affine scheme. The direct sum of an arbitrary collection of quasi-coherent sheaves on $X$ is quasi-coherent. The same holds for colimits.
Proof. Suppose $\mathcal{F}_ i$, $i \in I$ is a collection of quasi-coherent sheaves on $X$. By Lemma 26.7.5 above we can write $\mathcal{F}_ i = \widetilde{M_ i}$ for some $R$-module $M_ i$. Set $M = \bigoplus M_ i$. Consider the sheaf $\widetilde{M}$. For each standard open $D(f)$ we have
Hence we see that the quasi-coherent $\mathcal{O}_ X$-module $\widetilde{M}$ is the direct sum of the sheaves $\mathcal{F}_ i$. A similar argument works for general colimits. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: