Lemma 17.10.5. Let (X, \mathcal{O}_ X) be ringed space. Let \alpha : R \to \Gamma (X, \mathcal{O}_ X) be a ring homomorphism from a ring R into the ring of global sections on X. Let M be an R-module. The following three constructions give canonically isomorphic sheaves of \mathcal{O}_ X-modules:
Let \pi : (X, \mathcal{O}_ X) \longrightarrow (\{ *\} , R) be the morphism of ringed spaces with \pi : X \to \{ *\} the unique map and with \pi -map \pi ^\sharp the given map \alpha : R \to \Gamma (X, \mathcal{O}_ X). Set \mathcal{F}_1 = \pi ^*M.
Choose a presentation \bigoplus _{j \in J} R \to \bigoplus _{i \in I} R \to M \to 0. Set
\mathcal{F}_2 = \mathop{\mathrm{Coker}}\left( \bigoplus \nolimits _{j \in J} \mathcal{O}_ X \to \bigoplus \nolimits _{i \in I} \mathcal{O}_ X \right).Here the map on the component \mathcal{O}_ X corresponding to j \in J given by the section \sum _ i \alpha (r_{ij}) where the r_{ij} are the matrix coefficients of the map in the presentation of M.
Set \mathcal{F}_3 equal to the sheaf associated to the presheaf U \mapsto \mathcal{O}_ X(U) \otimes _ R M, where the map R \to \mathcal{O}_ X(U) is the composition of \alpha and the restriction map \mathcal{O}_ X(X) \to \mathcal{O}_ X(U).
This construction has the following properties:
The resulting sheaf of \mathcal{O}_ X-modules \mathcal{F}_ M = \mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}_3 is quasi-coherent.
The construction gives a functor from the category of R-modules to the category of quasi-coherent sheaves on X which commutes with arbitrary colimits.
For any x \in X we have \mathcal{F}_{M, x} = \mathcal{O}_{X, x} \otimes _ R M functorial in M.
Given any \mathcal{O}_ X-module \mathcal{G} we have
\mathop{\mathrm{Mor}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}_ M, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _ R(M, \Gamma (X, \mathcal{G}))where the R-module structure on \Gamma (X, \mathcal{G}) comes from the \Gamma (X, \mathcal{O}_ X)-module structure via \alpha .
Comments (2)
Comment #24 by Pieter Belmans on
Comment #25 by Johan on