The Stacks project

Lemma 17.3.3. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces.

  1. The functor $f_* : \textit{Mod}(\mathcal{O}_ X) \to \textit{Mod}(\mathcal{O}_ Y)$ is left exact. In fact it commutes with all limits.

  2. The functor $f^* : \textit{Mod}(\mathcal{O}_ Y) \to \textit{Mod}(\mathcal{O}_ X)$ is right exact. In fact it commutes with all colimits.

  3. Pullback $f^{-1} : \textit{Ab}(Y) \to \textit{Ab}(X)$ on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because $(f^*, f_*)$ is an adjoint pair of functors, see Sheaves, Lemma 6.26.2 and Categories, Section 4.24. Part (3) holds because exactness can be checked on stalks (Lemma 17.3.1) and the description of stalks of the pullback, see Sheaves, Lemma 6.22.1. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01AJ. Beware of the difference between the letter 'O' and the digit '0'.