Lemma 17.3.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. The category $\textit{Mod}(\mathcal{O}_ X)$ is an abelian category. Moreover a complex
is exact at $\mathcal{G}$ if and only if for all $x \in X$ the complex
is exact at $\mathcal{G}_ x$.
Lemma 17.3.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. The category $\textit{Mod}(\mathcal{O}_ X)$ is an abelian category. Moreover a complex
is exact at $\mathcal{G}$ if and only if for all $x \in X$ the complex
is exact at $\mathcal{G}_ x$.
Proof. By Homology, Definition 12.5.1 we have to show that image and coimage agree. By Sheaves, Lemma 6.16.1 it is enough to show that image and coimage have the same stalk at every $x \in X$. By the constructions of kernels and cokernels above these stalks are the coimage and image in the categories of $\mathcal{O}_{X, x}$-modules. Thus we get the result from the fact that the category of modules over a ring is abelian. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)