Lemma 17.10.7. Let (X, \mathcal{O}_ X) be a ringed space. Set R = \Gamma (X, \mathcal{O}_ X). Let M be an R-module. Let \mathcal{F}_ M be the quasi-coherent sheaf of \mathcal{O}_ X-modules associated to M. If g : (Y, \mathcal{O}_ Y) \to (X, \mathcal{O}_ X) is a morphism of ringed spaces, then g^*\mathcal{F}_ M is the sheaf associated to the \Gamma (Y, \mathcal{O}_ Y)-module \Gamma (Y, \mathcal{O}_ Y) \otimes _ R M.
Proof. The assertion follows from the first description of \mathcal{F}_ M in Lemma 17.10.5 as \pi ^*M, and the following commutative diagram of ringed spaces
\xymatrix{ (Y, \mathcal{O}_ Y) \ar[r]_-\pi \ar[d]_ g & (\{ *\} , \Gamma (Y, \mathcal{O}_ Y)) \ar[d]^{\text{induced by }g^\sharp } \\ (X, \mathcal{O}_ X) \ar[r]^-\pi & (\{ *\} , \Gamma (X, \mathcal{O}_ X)) }
(Also use Sheaves, Lemma 6.26.3.) \square
Comments (2)
Comment #2037 by Matthieu Romagny on
Comment #2075 by Johan on