Lemma 19.11.6. Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$. An object $I$ of $\mathcal{A}$ is injective if and only if in every commutative diagram
for $M \subset U$ a subobject, the dotted arrow exists.
To check that an object is injective, one only needs to check that lifting holds for subobjects of a generator.
Lemma 19.11.6. Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$. An object $I$ of $\mathcal{A}$ is injective if and only if in every commutative diagram for $M \subset U$ a subobject, the dotted arrow exists.
Proof.
Please see Lemma 19.2.6 for the case of modules. Choose an injection $A \subset B$ and a morphism $\varphi : A \to I$. Consider the set $S$ of pairs $(A', \varphi ')$ consisting of subobjects $A \subset A' \subset B$ and a morphism $\varphi ' : A' \to I$ extending $\varphi $. Define a partial ordering on this set in the obvious manner. Choose a totally ordered subset $T \subset S$. Then
is an upper bound. Hence by Zorn's lemma the set $S$ has a maximal element $(A', \varphi ')$. We claim that $A' = B$. If not, then choose a morphism $\psi : U \to B$ which does not factor through $A'$. Set $N = A' \cap \psi (U)$. Set $M = \psi ^{-1}(N)$. Then the map
can be extended to a morphism $\chi : U \to I$. Since $\chi |_{\mathop{\mathrm{Ker}}(\psi )} = 0$ we see that $\chi $ factors as
Since $\varphi '$ and $\varphi ''$ agree on $N = A' \cap \mathop{\mathrm{Im}}(\psi )$ we see that combined the define a morphism $A' + \mathop{\mathrm{Im}}(\psi ) \to I$ contradicting the assumed maximality of $A'$.
$\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1091 by Alex Youcis on
There are also: