Lemma 19.12.1. Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$. Let $c$ be the function on cardinals defined by $c(\kappa ) = |\bigoplus _{\alpha \in \kappa } U|$. If $\pi : M \to N$ is a surjection then there exists a subobject $M' \subset M$ which surjects onto $N$ with $|M'| \leq c(|N|)$.
Proof. For every proper subobject $N' \subset N$ choose a morphism $\varphi _{N'} : U \to M$ such that $U \to M \to N$ does not factor through $N'$. Set
\[ M' = \mathop{\mathrm{Im}}\left( \bigoplus \nolimits _{N' \subset N} \varphi _{N'} : \bigoplus \nolimits _{N' \subset N} U \longrightarrow M\right) \]
Then $M'$ works. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8034 by François Loeser on
Comment #8199 by Aise Johan de Jong on