Lemma 19.12.4. Let $\mathcal{A}$ be a Grothendieck abelian category. Let $(K_ i^\bullet )_{i \in I}$ be a set of acyclic complexes. There exists a functor $M^\bullet \mapsto \mathbf{M}^\bullet (M^\bullet )$ and a natural transformation $j_{M^\bullet } : M^\bullet \to \mathbf{M}^\bullet (M^\bullet )$ such

1. $j_{M^\bullet }$ is a (termwise) injective quasi-isomorphism, and

2. for every $i \in I$ and $w : K_ i^\bullet \to M^\bullet$ the morphism $j_{M^\bullet } \circ w$ is homotopic to zero.

Proof. For every $i \in I$ choose a (termwise) injective map of complexes $K_ i^\bullet \to L_ i^\bullet$ which is homotopic to zero with $L_ i^\bullet$ quasi-isomorphic to zero. For example, take $L_ i^\bullet$ to be the cone on the identity of $K_ i^\bullet$. We define $\mathbf{M}^\bullet (M^\bullet )$ by the following pushout diagram

$\xymatrix{ \bigoplus _{i \in I} \bigoplus _{w : K_ i^\bullet \to M^\bullet } K_ i^\bullet \ar[r] \ar[d] & M^\bullet \ar[d] \\ \bigoplus _{i \in I} \bigoplus _{w : K_ i^\bullet \to M^\bullet } L_ i^\bullet \ar[r] & \mathbf{M}^\bullet (M^\bullet ). }$

Then $M^\bullet \to \mathbf{M}^\bullet (M^\bullet )$ is a functor. The right vertical arrow defines the functorial injective map $j_{M^\bullet }$. The cokernel of $j_{M^\bullet }$ is isomorphic to the direct sum of the cokernels of the maps $K_ i^\bullet \to L_ i^\bullet$ hence acyclic. Thus $j_{M^\bullet }$ is a quasi-isomorphism. Part (2) holds by construction. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).