Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 20.28.1. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. The functor $Rf_*$ defined above and the functor $Lf^*$ defined in Lemma 20.27.1 are adjoint:

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(Lf^*\mathcal{G}^\bullet , \mathcal{F}^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}(\mathcal{G}^\bullet , Rf_*\mathcal{F}^\bullet ) \]

bifunctorially in $\mathcal{F}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}_ X))$ and $\mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}_ Y))$.

Proof. This follows formally from the fact that $Rf_*$ and $Lf^*$ exist, see Derived Categories, Lemma 13.30.3. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 20.28: Cohomology of unbounded complexes

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.