The Stacks project

Example 15.40.2. Let $k$ be a field of characteristic $p > 0$. Suppose that $a \in k$ is an element which is not a $p$th power. A standard example of a geometrically regular local $k$-algebra whose residue field is purely inseparable over $k$ is the ring

\[ A = k[x, y]_{(x, y^ p - a)}/(y^ p - a - x) \]

Namely, $A$ is a localization of a smooth algebra over $k$ hence $k \to A$ is formally smooth, hence $k \to A$ is formally smooth for the $\mathfrak m$-adic topology. A closely related example is the following. Let $k = \mathbf{F}_ p(s)$ and $K = \mathbf{F}_ p(t)^{perf}$. We claim the ring map

\[ k \longrightarrow A = K[[x]],\quad s \longmapsto t + x \]

is formally smooth for the $(x)$-adic topology on $A$. Namely, $\Omega _{k/\mathbf{F}_ p}$ is $1$-dimensional with basis $\text{d}s$. It maps to the element $\text{d}x + \text{d}t = \text{d}x$ in $\Omega _{A/\mathbf{F}_ p}$. We leave it to the reader to show that $\Omega _{A/\mathbf{F}_ p}$ is free on $\text{d}x$ as an $A$-module. Hence we see that condition (5) of Theorem 15.40.1 holds and we conclude that $k \to A$ is formally smooth in the $(x)$-adic topology.


Comments (0)

There are also:

  • 3 comment(s) on Section 15.40: Geometric regularity and formal smoothness

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07EM. Beware of the difference between the letter 'O' and the digit '0'.