The Stacks project

Lemma 16.11.1. Let $k$ be a field of characteristic $p > 0$. Let $(\Lambda , \mathfrak m, K)$ be an Artinian local $k$-algebra. Assume that $\dim H_1(L_{K/k}) < \infty $. Then $\Lambda $ is a filtered colimit of Artinian local $k$-algebras $A$ with each map $A \to \Lambda $ flat, with $\mathfrak m_ A \Lambda = \mathfrak m$, and with $A$ essentially of finite type over $k$.

Proof. Note that the flatness of $A \to \Lambda $ implies that $A \to \Lambda $ is injective, so the lemma really tells us that $\Lambda $ is a directed union of these types of subrings $A \subset \Lambda $. Let $n$ be the minimal integer such that $\mathfrak m^ n = 0$. We will prove this lemma by induction on $n$. The case $n = 1$ is clear as a field extension is a union of finitely generated field extensions.

Pick $\lambda _1, \ldots , \lambda _ d \in \mathfrak m$ which generate $\mathfrak m$. As $K$ is formally smooth over $\mathbf{F}_ p$ (see Algebra, Lemma 10.158.7) we can find a ring map $\sigma : K \to \Lambda $ which is a section of the quotient map $\Lambda \to K$. In general $\sigma $ is not a $k$-algebra map. Given $\sigma $ we define

\[ \Psi _\sigma : K[x_1, \ldots , x_ d] \longrightarrow \Lambda \]

using $\sigma $ on elements of $K$ and mapping $x_ i$ to $\lambda _ i$. Claim: there exists a $\sigma : K \to \Lambda $ and a subfield $k \subset F \subset K$ finitely generated over $k$ such that the image of $k$ in $\Lambda $ is contained in $\Psi _\sigma (F[x_1, \ldots , x_ d])$.

We will prove the claim by induction on the least integer $n$ such that $\mathfrak m^ n = 0$. It is clear for $n = 1$. If $n > 1$ set $I = \mathfrak m^{n - 1}$ and $\Lambda ' = \Lambda /I$. By induction we may assume given $\sigma ' : K \to \Lambda '$ and $k \subset F' \subset K$ finitely generated such that the image of $k \to \Lambda \to \Lambda '$ is contained in $A' = \Psi _{\sigma '}(F'[x_1, \ldots , x_ d])$. Denote $\tau ' : k \to A'$ the induced map. Choose a lift $\sigma : K \to \Lambda $ of $\sigma '$ (this is possible by the formal smoothness of $K/\mathbf{F}_ p$ we mentioned above). For later reference we note that we can change $\sigma $ to $\sigma + D$ for some derivation $D : K \to I$. Set $A = F[x_1, \ldots , x_ d]/(x_1, \ldots , x_ d)^ n$. Then $\Psi _\sigma $ induces a ring map $\Psi _\sigma : A \to \Lambda $. The composition with the quotient map $\Lambda \to \Lambda '$ induces a surjective map $A \to A'$ with nilpotent kernel. Choose a lift $\tau : k \to A$ of $\tau '$ (possible as $k/\mathbf{F}_ p$ is formally smooth). Thus we obtain two maps $k \to \Lambda $, namely $\Psi _\sigma \circ \tau : k \to \Lambda $ and the given map $i : k \to \Lambda $. These maps agree modulo $I$, whence the difference is a derivation $\theta = i - \Psi _\sigma \circ \tau : k \to I$. Note that if we change $\sigma $ into $\sigma + D$ then we change $\theta $ into $\theta - D|_ k$.

Choose a set of elements $\{ y_ j\} _{j \in J}$ of $k$ whose differentials $\text{d}y_ j$ form a basis of $\Omega _{k/\mathbf{F}_ p}$. The Jacobi-Zariski sequence for $\mathbf{F}_ p \subset k \subset K$ is

\[ 0 \to H_1(L_{K/k}) \to \Omega _{k/\mathbf{F}_ p} \otimes K \to \Omega _{K/\mathbf{F}_ p} \to \Omega _{K/k} \to 0 \]

As $\dim H_1(L_{K/k}) < \infty $ we can find a finite subset $J_0 \subset J$ such that the image of the first map is contained in $\bigoplus _{j \in J_0} K\text{d}y_ j$. Hence the elements $\text{d}y_ j$, $j \in J \setminus J_0$ map to $K$-linearly independent elements of $\Omega _{K/\mathbf{F}_ p}$. Therefore we can choose a $D : K \to I$ such that $\theta - D|_ k = \xi \circ \text{d}$ where $\xi $ is a composition

\[ \Omega _{k/\mathbf{F}_ p} = \bigoplus \nolimits _{j \in J} k \text{d}y_ j \longrightarrow \bigoplus \nolimits _{j \in J_0} k \text{d}y_ j \longrightarrow I \]

Let $f_ j = \xi (\text{d}y_ j) \in I$ for $j \in J_0$. Change $\sigma $ into $\sigma + D$ as above. Then we see that $\theta (a) = \sum _{j \in J_0} a_ j f_ j$ for $a \in k$ where $\text{d}a = \sum a_ j \text{d}y_ j$ in $\Omega _{k/\mathbf{F}_ p}$. Note that $I$ is generated by the monomials $\lambda ^ E = \lambda _1^{e_1} \ldots \lambda _ d^{e_ d}$ of total degree $|E| = \sum e_ i = n - 1$ in $\lambda _1, \ldots , \lambda _ d$. Write $f_ j = \sum _ E c_{j, E} \lambda ^ E$ with $c_{j, E} \in K$. Replace $F'$ by $F = F'(c_{j, E})$. Then the claim holds.

Choose $\sigma $ and $F$ as in the claim. The kernel of $\Psi _\sigma $ is generated by finitely many polynomials $g_1, \ldots , g_ t \in K[x_1, \ldots , x_ d]$ and we may assume their coefficients are in $F$ after enlarging $F$ by adjoining finitely many elements. In this case it is clear that the map $A = F[x_1, \ldots , x_ d]/(g_1, \ldots , g_ t) \to K[x_1, \ldots , x_ d]/(g_1, \ldots , g_ t) = \Lambda $ is flat. By the claim $A$ is a $k$-subalgebra of $\Lambda $. It is clear that $\Lambda $ is the filtered colimit of these algebras, as $K$ is the filtered union of the subfields $F$. Finally, these algebras are essentially of finite type over $k$ by Algebra, Lemma 10.54.4. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07FG. Beware of the difference between the letter 'O' and the digit '0'.