Definition 60.11.1. In Situation 60.7.5. Let $\mathcal{C} = \text{CRIS}(X/S)$ or $\mathcal{C} = \text{Cris}(X/S)$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_{X/S}$-modules on $\mathcal{C}$.

We say $\mathcal{F}$ is

*locally quasi-coherent*if for every object $(U, T, \delta )$ of $\mathcal{C}$ the restriction $\mathcal{F}_ T$ is a quasi-coherent $\mathcal{O}_ T$-module.We say $\mathcal{F}$ is

*quasi-coherent*if it is quasi-coherent in the sense of Modules on Sites, Definition 18.23.1.We say $\mathcal{F}$ is a

*crystal in $\mathcal{O}_{X/S}$-modules*if all the comparison maps (60.10.0.2) are isomorphisms.

## Comments (0)