The Stacks project

60.15 Connections

In Situation 60.7.5. Given an $\mathcal{O}_{X/S}$-module $\mathcal{F}$ on $\text{Cris}(X/S)$ a connection is a map of abelian sheaves

\[ \nabla : \mathcal{F} \longrightarrow \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega _{X/S} \]

such that $\nabla (f s) = f\nabla (s) + s \otimes \text{d}f$ for local sections $s, f$ of $\mathcal{F}$ and $\mathcal{O}_{X/S}$. Given a connection there are canonical maps $ \nabla : \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^ i_{X/S} \longrightarrow \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^{i + 1}_{X/S} $ defined by the rule $\nabla (s \otimes \omega ) = \nabla (s) \wedge \omega + s \otimes \text{d}\omega $ as in Remark 60.6.8. We say the connection is integrable if $\nabla \circ \nabla = 0$. If $\nabla $ is integrable we obtain the de Rham complex

\[ \mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^1_{X/S} \to \mathcal{F} \otimes _{\mathcal{O}_{X/S}} \Omega ^2_{X/S} \to \ldots \]

on $\text{Cris}(X/S)$. It turns out that any crystal in $\mathcal{O}_{X/S}$-modules comes equipped with a canonical integrable connection.

Lemma 60.15.1. In Situation 60.7.5. Let $\mathcal{F}$ be a crystal in $\mathcal{O}_{X/S}$-modules on $\text{Cris}(X/S)$. Then $\mathcal{F}$ comes equipped with a canonical integrable connection.

Proof. Say $(U, T, \delta )$ is an object of $\text{Cris}(X/S)$. Let $(U, T', \delta ')$ be the infinitesimal thickening of $T$ by $(\Omega _{X/S})_ T = \Omega _{T/S, \delta }$ constructed in Remark 60.13.1. It comes with projections $p_0, p_1 : T' \to T$ and a diagonal $i : T \to T'$. By assumption we get isomorphisms

\[ p_0^*\mathcal{F}_ T \xrightarrow {c_0} \mathcal{F}_{T'} \xleftarrow {c_1} p_1^*\mathcal{F}_ T \]

of $\mathcal{O}_{T'}$-modules. Pulling $c = c_1^{-1} \circ c_0$ back to $T$ by $i$ we obtain the identity map of $\mathcal{F}_ T$. Hence if $s \in \Gamma (T, \mathcal{F}_ T)$ then $\nabla (s) = p_1^*s - c(p_0^*s)$ is a section of $p_1^*\mathcal{F}_ T$ which vanishes on pulling back by $i$. Hence $\nabla (s)$ is a section of

\[ \mathcal{F}_ T \otimes _{\mathcal{O}_ T} \Omega _{T/S, \delta } \]

because this is the kernel of $p_1^*\mathcal{F}_ T \to \mathcal{F}_ T$ as $\mathcal{O}_{T'} = \mathcal{O}_ T \oplus \Omega _{T/S, \delta }$ by construction. It is easily verified that $\nabla (fs) = f\nabla (s) + s \otimes \text{d}(f)$ using the description of $\text{d}$ in Remark 60.13.1.

The collection of maps

\[ \nabla : \Gamma (T, \mathcal{F}_ T) \to \Gamma (T, \mathcal{F}_ T \otimes _{\mathcal{O}_ T} \Omega _{T/S, \delta }) \]

so obtained is functorial in $T$ because the construction of $T'$ is functorial in $T$. Hence we obtain a connection.

To show that the connection is integrable we consider the object $(U, T'', \delta '')$ constructed in Remark 60.13.2. Because $\mathcal{F}$ is a sheaf we see that

\[ \xymatrix{ q_0^*\mathcal{F}_ T \ar[rr]_{q_{01}^*c} \ar[rd]_{q_{02}^*c} & & q_1^*\mathcal{F}_ T \ar[ld]^{q_{12}^*c} \\ & q_2^*\mathcal{F}_ T } \]

is a commutative diagram of $\mathcal{O}_{T''}$-modules. For $s \in \Gamma (T, \mathcal{F}_ T)$ we have $c(p_0^*s) = p_1^*s - \nabla (s)$. Write $\nabla (s) = \sum p_1^*s_ i \cdot \omega _ i$ where $s_ i$ is a local section of $\mathcal{F}_ T$ and $\omega _ i$ is a local section of $\Omega _{T/S, \delta }$. We think of $\omega _ i$ as a local section of the structure sheaf of $\mathcal{O}_{T'}$ and hence we write product instead of tensor product. On the one hand

\begin{align*} q_{12}^*c \circ q_{01}^*c(q_0^*s) & = q_{12}^*c(q_1^*s - \sum q_1^*s_ i \cdot q_{01}^*\omega _ i) \\ & = q_2^*s - \sum q_2^*s_ i \cdot q_{12}^*\omega _ i - \sum q_2^*s_ i \cdot q_{01}^*\omega _ i + \sum q_{12}^*\nabla (s_ i) \cdot q_{01}^*\omega _ i \end{align*}

and on the other hand

\[ q_{02}^*c(q_0^*s) = q_2^*s - \sum q_2^*s_ i \cdot q_{02}^*\omega _ i. \]

From the formulae of Remark 60.13.2 we see that $q_{01}^*\omega _ i + q_{12}^*\omega _ i - q_{02}^*\omega _ i = \text{d}\omega _ i$. Hence the difference of the two expressions above is

\[ \sum q_2^*s_ i \cdot \text{d}\omega _ i - \sum q_{12}^*\nabla (s_ i) \cdot q_{01}^*\omega _ i \]

Note that $q_{12}^*\omega \cdot q_{01}^*\omega ' = \omega ' \wedge \omega = - \omega \wedge \omega '$ by the definition of the multiplication on $\mathcal{O}_{T''}$. Thus the expression above is $\nabla ^2(s)$ viewed as a section of the subsheaf $\mathcal{F}_ T \otimes \Omega ^2_{T/S, \delta }$ of $q_2^*\mathcal{F}$. Hence we get the integrability condition. $\square$

Comments (2)

Comment #4172 by Zeyu Liu on

what is Δ here? Is it just the diagonal i ?

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07J5. Beware of the difference between the letter 'O' and the digit '0'.