The Stacks project

Lemma 13.32.3. Let $F : \mathcal{A} \to \mathcal{B}$ be a right exact functor of abelian categories. If

  1. every object of $\mathcal{A}$ is a quotient of an object which is left acyclic for $F$,

  2. there exists an integer $n \geq 0$ such that $L^ nF = 0$,


  1. $LF : D(\mathcal{A}) \to D(\mathcal{B})$ exists,

  2. any complex consisting of left acyclic objects for $F$ computes $LF$,

  3. any complex is the target of a quasi-isomorphism from a complex consisting of left acyclic objects for $F$,

  4. for $E \in D(\mathcal{A})$

    1. $H^ i(LF(\tau _{\leq a + n - 1}E) \to H^ i(LF(E))$ is an isomorphism for $i \leq a$,

    2. $H^ i(LF(E)) \to H^ i(LF(\tau _{\geq b}E))$ is an isomorphism for $i \geq b$,

    3. if $H^ i(E) = 0$ for $i \not\in [a, b]$ for some $-\infty \leq a \leq b \leq \infty $, then $H^ i(LF(E)) = 0$ for $i \not\in [a - n + 1, b]$.

Proof. This is dual to Lemma 13.32.2. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07K8. Beware of the difference between the letter 'O' and the digit '0'.