The Stacks project

Remark 15.87.6. With assumptions as in Lemma 15.87.5. A priori there are many isomorphism classes of objects $M$ of $D(\textit{Mod}(\mathbf{N}, (A_ n)))$ which give rise to the system $(K_ n, \varphi _ n)$ of the lemma. For each such $M$ we can consider the complex $R\mathop{\mathrm{lim}}\nolimits M \in D(A)$ where $A = \mathop{\mathrm{lim}}\nolimits A_ n$. By Lemma 15.87.3 we see that $R\mathop{\mathrm{lim}}\nolimits M$ is a derived limit of the inverse system $(K_ n)$ of $D(A)$. Hence we see that the isomorphism class of $R\mathop{\mathrm{lim}}\nolimits M$ in $D(A)$ is independent of the choices made in constructing $M$. In particular, we may apply results on $R\mathop{\mathrm{lim}}\nolimits $ proved in this section to derived limits of inverse systems in $D(A)$. For example, for every $p \in \mathbf{Z}$ there is a canonical short exact sequence

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(K_ n) \to H^ p(R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathop{\mathrm{lim}}\nolimits H^ p(K_ n) \to 0 \]

because we may apply Lemma 15.87.3 to $M$. This can also been seen directly, without invoking the existence of $M$, by applying the argument of the proof of Lemma 15.87.3 to the (defining) distinguished triangle $R\mathop{\mathrm{lim}}\nolimits K_ n \to \prod K_ n \to \prod K_ n \to (R\mathop{\mathrm{lim}}\nolimits K_ n)[1]$ of the derived limit.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07KZ. Beware of the difference between the letter 'O' and the digit '0'.