The Stacks project

Lemma 15.78.2. Let $R$ be a ring. Let $K \in D(R)$ be an object such that for every countable set of objects $E_ n \in D(R)$ the canonical map

\[ \bigoplus \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, E_ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \bigoplus E_ n) \]

is a bijection. Then, given any system $L_ n^\bullet $ of complexes over $\mathbf{N}$ we have that

\[ \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, L^\bullet _ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, L^\bullet ) \]

is a bijection, where $L^\bullet $ is the termwise colimit, i.e., $L^ m = \mathop{\mathrm{colim}}\nolimits L_ n^ m$ for all $m \in \mathbf{Z}$.

Proof. Consider the short exact sequence of complexes

\[ 0 \to \bigoplus L_ n^\bullet \to \bigoplus L_ n^\bullet \to L^\bullet \to 0 \]

where the first map is given by $1 - t_ n$ in degree $n$ where $t_ n : L_ n^\bullet \to L_{n + 1}^\bullet $ is the transition map. By Derived Categories, Lemma 13.12.1 this is a distinguished triangle in $D(R)$. Apply the homological functor $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, -)$, see Derived Categories, Lemma 13.4.2. Thus a long exact cohomology sequence

\[ \xymatrix{ & \ldots \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \mathop{\mathrm{colim}}\nolimits L^\bullet _ n[-1]) \ar[lld] \\ \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \bigoplus L^\bullet _ n) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \bigoplus L^\bullet _ n) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \mathop{\mathrm{colim}}\nolimits L^\bullet _ n) \ar[lld] \\ \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \bigoplus L^\bullet _ n[1]) \ar[r] & \ldots } \]

Since we have assumed that $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \bigoplus L^\bullet _ n)$ is equal to $\bigoplus \mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, L^\bullet _ n)$ we see that the first map on every row of the diagram is injective (by the explicit description of this map as the sum of the maps induced by $1 - t_ n$). Hence we conclude that $\mathop{\mathrm{Hom}}\nolimits _{D(R)}(K, \mathop{\mathrm{colim}}\nolimits L^\bullet _ n)$ is the cokernel of the first map of the middle row in the diagram above which is what we had to show. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 15.78: Characterizing perfect complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07LR. Beware of the difference between the letter 'O' and the digit '0'.