The Stacks project

Lemma 15.9.2. Let $A$ be a ring, let $I \subset A$ be an ideal, let $\overline{e} \in A/I$ be an idempotent. There exists an ├ętale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and an idempotent $e' \in A'$ lifting $\overline{e}$.

Proof. Choose any lift $x \in A$ of $\overline{e}$. Set

\[ A' = A[t]/(t^2 - t)\left[\frac{1}{t - 1 + x}\right]. \]

The ring map $A \to A'$ is ├ętale because $(2t - 1)\text{d}t = 0$ and $(2t - 1)(2t - 1) = 1$ which is invertible. We have $A'/IA' = A/I[t]/(t^2 - t)[\frac{1}{t - 1 + \overline{e}}] \cong A/I$ the last map sending $t$ to $\overline{e}$ which works as $\overline{e}$ is a root of $t^2 - t$. This also shows that setting $e'$ equal to the class of $t$ in $A'$ works. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07LY. Beware of the difference between the letter 'O' and the digit '0'.