Lemma 15.9.2. Let $A$ be a ring, let $I \subset A$ be an ideal, let $\overline{e} \in A/I$ be an idempotent. There exists an étale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and an idempotent $e' \in A'$ lifting $\overline{e}$.

**Proof.**
Choose any lift $x \in A$ of $\overline{e}$. Set

The ring map $A \to A'$ is étale because $(2t - 1)\text{d}t = 0$ and $(2t - 1)(2t - 1) = 1$ which is invertible. We have $A'/IA' = A/I[t]/(t^2 - t)[\frac{1}{t - 1 + \overline{e}}] \cong A/I$ the last map sending $t$ to $\overline{e}$ which works as $\overline{e}$ is a root of $t^2 - t$. This also shows that setting $e'$ equal to the class of $t$ in $A'$ works. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)