Remark 60.24.8 (Base change map). In the situation of Remark 60.24.1 assume $S = \mathop{\mathrm{Spec}}(A)$ and $S' = \mathop{\mathrm{Spec}}(A')$ are affine. Let $\mathcal{F}'$ be an $\mathcal{O}_{X'/S'}$-module. Let $\mathcal{F}$ be the pullback of $\mathcal{F}'$. Then there is a canonical base change map
where $\tau _{X/S}$ and $\tau _{X'/S'}$ are the structure morphisms, see Remark 60.9.6. On global sections this gives a base change map
in $D(A)$.
Hint: Compose the very general base change map of Cohomology on Sites, Remark 21.19.3 with the canonical map $Lf_{\text{cris}}^*\mathcal{F}' \to f_{\text{cris}}^*\mathcal{F}' = \mathcal{F}$.
Comments (0)
There are also: