Processing math: 100%

The Stacks project

Remark 60.24.8 (Base change map). In the situation of Remark 60.24.1 assume S = \mathop{\mathrm{Spec}}(A) and S' = \mathop{\mathrm{Spec}}(A') are affine. Let \mathcal{F}' be an \mathcal{O}_{X'/S'}-module. Let \mathcal{F} be the pullback of \mathcal{F}'. Then there is a canonical base change map

L(S' \to S)^*R\tau _{X'/S', *}\mathcal{F}' \longrightarrow R\tau _{X/S, *}\mathcal{F}

where \tau _{X/S} and \tau _{X'/S'} are the structure morphisms, see Remark 60.9.6. On global sections this gives a base change map

60.24.8.1
\begin{equation} \label{crystalline-equation-base-change-map} R\Gamma (\text{Cris}(X'/S'), \mathcal{F}') \otimes ^\mathbf {L}_{A'} A \longrightarrow R\Gamma (\text{Cris}(X/S), \mathcal{F}) \end{equation}

in D(A).

Hint: Compose the very general base change map of Cohomology on Sites, Remark 21.19.3 with the canonical map Lf_{\text{cris}}^*\mathcal{F}' \to f_{\text{cris}}^*\mathcal{F}' = \mathcal{F}.


Comments (0)

There are also:

  • 2 comment(s) on Section 60.24: Some further results

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.