60.24 Some further results
In this section we mention some results whose proof is missing. We will formulate these as a series of remarks and we will convert them into actual lemmas and propositions only when we add detailed proofs.
Hints: In case (1) we can use that
\[ H^ i(\text{Cris}(X/S), \mathcal{F}) = H^ i(X_{Zar}, Ru_{X/S, *}\mathcal{F}) \]
and that $Ru_{X/S, *}\mathcal{F}$ is locally calculated by a de Rham complex constructed using an embedding of $X$ into a smooth scheme of dimension $e$ over $S$ (see Lemma 60.21.4). These de Rham complexes are zero in all degrees $> e$. Hence (1) follows from Cohomology, Proposition 20.20.7. In case (2) we use the alternating Čech complex (see Remark 60.24.4) to reduce to the case $X$ affine. In the affine case we prove the result using the de Rham complex associated to an embedding of $X$ into a smooth scheme of dimension $e$ over $S$ (it takes some work to construct such a thing).
Hints: Condition (1) means that in the arguments below $p$-adic completion does nothing and can be ignored. Using condition (3) and Mayer Vietoris (see Remark 60.24.2) this reduces to the case where $X'$ is affine. In fact by condition (6), after shrinking further, we can assume that $X' = \mathop{\mathrm{Spec}}(C')$ and we are given a presentation $C' = A'/I'[x_1, \ldots , x_ n]/(\bar f'_1, \ldots , \bar f'_ c)$ where $\bar f'_1, \ldots , \bar f'_ c$ is a Koszul-regular sequence in $A'/I'$. (This means that smooth locally $\bar f'_1, \ldots , \bar f'_ c$ forms a regular sequence, see More on Algebra, Lemma 15.30.17.) We choose a lift of $\bar f'_ i$ to an element $f'_ i \in A'[x_1, \ldots , x_ n]$. By (4) we see that $X = \mathop{\mathrm{Spec}}(C)$ with $C = A/I[x_1, \ldots , x_ n]/(\bar f_1, \ldots , \bar f_ c)$ where $f_ i \in A[x_1, \ldots , x_ n]$ is the image of $f'_ i$. By property (7) we see that $\bar f_1, \ldots , \bar f_ c$ is a Koszul-regular sequence in $A/I[x_1, \ldots , x_ n]$. The divided power envelope of $I'A'[x_1, \ldots , x_ n] + (f'_1, \ldots , f'_ c)$ in $A'[x_1, \ldots , x_ n]$ relative to $\gamma '$ is
\[ D' = A'[x_1, \ldots , x_ n]\langle \xi _1, \ldots , \xi _ c \rangle /(\xi _ i - f'_ i) \]
see Lemma 60.2.4. Then you check that $\xi _1 - f'_1, \ldots , \xi _ n - f'_ n$ is a Koszul-regular sequence in the ring $A'[x_1, \ldots , x_ n]\langle \xi _1, \ldots , \xi _ c\rangle $. Similarly the divided power envelope of $IA[x_1, \ldots , x_ n] + (f_1, \ldots , f_ c)$ in $A[x_1, \ldots , x_ n]$ relative to $\gamma $ is
\[ D = A[x_1, \ldots , x_ n]\langle \xi _1, \ldots , \xi _ c\rangle /(\xi _ i - f_ i) \]
and $\xi _1 - f_1, \ldots , \xi _ n - f_ n$ is a Koszul-regular sequence in the ring $A[x_1, \ldots , x_ n]\langle \xi _1, \ldots , \xi _ c\rangle $. It follows that $D' \otimes _{A'}^\mathbf {L} A = D$. Condition (2) implies $\mathcal{F}'$ corresponds to a pair $(M', \nabla )$ consisting of a $D'$-module with connection, see Proposition 60.17.4. Then $M = M' \otimes _{D'} D$ corresponds to the pullback $\mathcal{F}$. By assumption (5) we see that $M'$ is a flat $D'$-module, hence
\[ M = M' \otimes _{D'} D = M' \otimes _{D'} D' \otimes _{A'}^\mathbf {L} A = M' \otimes _{A'}^\mathbf {L} A \]
Since the modules of differentials $\Omega _{D'}$ and $\Omega _ D$ (as defined in Section 60.17) are free $D'$-modules on the same generators we see that
\[ M \otimes _ D \Omega ^\bullet _ D = M' \otimes _{D'} \Omega ^\bullet _{D'} \otimes _{D'} D = M' \otimes _{D'} \Omega ^\bullet _{D'} \otimes _{A'}^\mathbf {L} A \]
which proves what we want by Proposition 60.21.3.
Hints: See Divided Power Algebra, Lemma 23.4.2 for (1). See Lemma 60.15.1 for (2). For Part (3) note that there is a map, see (60.23.2.1). This map is an isomorphism when $X$ is affine, see Lemma 60.21.4. This shows that $Ru_{X/S, *}\mathcal{F}$ and $\mathcal{F}_ Y \otimes \Omega ^\bullet _{Y/S}$ are quasi-isomorphic as complexes on $Y_{Zar} = X_{Zar}$. Since $R\Gamma (\text{Cris}(X/S), \mathcal{F}) = R\Gamma (X_{Zar}, Ru_{X/S, *}\mathcal{F})$ the result follows.
Hints: The existence of $\mathcal{F}_ Y$ is Grothendieck's existence theorem (insert future reference here). The isomorphism of cohomologies follows as both sides are computed as $R\mathop{\mathrm{lim}}\nolimits $ of the versions modulo $p^ e$ (see Remark 60.24.10 for the left hand side; use the theorem on formal functions, see Cohomology of Schemes, Theorem 30.20.5 for the right hand side). Each of the versions modulo $p^ e$ are isomorphic by Remark 60.24.11.
Comments (2)
Comment #2478 by Daniel Litt on
Comment #2511 by Johan on