The Stacks project

Lemma 15.37.5. Let $R \to S$ be a ring map. Let $\mathfrak n$ be an ideal of $S$. Assume that $R \to S$ is formally smooth in the $\mathfrak n$-adic topology. Consider a solid commutative diagram

\[ \xymatrix{ S \ar[r]_\psi \ar@{-->}[rd] & A/J \\ R \ar[r] \ar[u] & A \ar[u] } \]

of homomorphisms of topological rings where $A$ is adic and $A/J$ is the quotient (as topological ring) of $A$ by a closed ideal $J \subset A$ such that $J^ t$ is contained in an ideal of definition of $A$ for some $t \geq 1$. Then there exists a dotted arrow in the category of topological rings which makes the diagram commute.

Proof. Let $I \subset A$ be an ideal of definition so that $I \supset J^ t$ for some $n$. Then $A = \mathop{\mathrm{lim}}\nolimits A/I^ n$ and $A/J = \mathop{\mathrm{lim}}\nolimits A/J + I^ n$ because $J$ is assumed closed. Consider the following diagram of discrete $R$ algebras $A_{n, m} = A/J^ n + I^ m$:

\[ \xymatrix{ A/J^3 + I^3 \ar[r] \ar[d] & A/J^2 + I^3 \ar[r] \ar[d] & A/J + I^3 \ar[d] \\ A/J^3 + I^2 \ar[r] \ar[d] & A/J^2 + I^2 \ar[r] \ar[d] & A/J + I^2 \ar[d] \\ A/J^3 + I \ar[r] & A/J^2 + I \ar[r] & A/J + I } \]

Note that each of the commutative squares defines a surjection

\[ A_{n + 1, m + 1} \longrightarrow A_{n + 1, m} \times _{A_{n, m}} A_{n, m + 1} \]

of $R$-algebras whose kernel has square zero. We will inductively construct $R$-algebra maps $\varphi _{n, m} : S \to A_{n, m}$. Namely, we have the maps $\varphi _{1, m} = \psi \bmod J + I^ m$. Note that each of these maps is continuous as $\psi $ is. We can inductively choose the maps $\varphi _{n, 1}$ by starting with our choice of $\varphi _{1, 1}$ and lifting up, using the formal smoothness of $S$ over $R$, along the right column of the diagram above. We construct the remaining maps $\varphi _{n, m}$ by induction on $n + m$. Namely, we choose $\varphi _{n + 1, m + 1}$ by lifting the pair $(\varphi _{n + 1, m}, \varphi _{n, m + 1})$ along the displayed surjection above (again using the formal smoothness of $S$ over $R$). In this way all of the maps $\varphi _{n, m}$ are compatible with the transition maps of the system. As $J^ t \subset I$ we see that for example $\varphi _ n = \varphi _{nt, n} \bmod I^ n$ induces a map $S \to A/I^ n$. Taking the limit $\varphi = \mathop{\mathrm{lim}}\nolimits \varphi _ n$ we obtain a map $S \to A = \mathop{\mathrm{lim}}\nolimits A/I^ n$. The composition into $A/J$ agrees with $\psi $ as we have seen that $A/J = \mathop{\mathrm{lim}}\nolimits A/J + I^ n$. Finally we show that $\varphi $ is continuous. Namely, we know that $\psi (\mathfrak n^ r) \subset J + I/J$ for some $r \geq 1$ by our assumption that $\psi $ is a morphism of topological rings, see Lemma 15.36.2. Hence $\varphi (\mathfrak n^ r) \subset J + I$ hence $\varphi (\mathfrak n^{rt}) \subset I$ as desired. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 15.37: Formally smooth maps of topological rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07NJ. Beware of the difference between the letter 'O' and the digit '0'.