Lemma 60.25.1. In the situation above there exists a map of complexes
such that $c_ M^\bullet \circ e_ M^\bullet $ and $e_ M^\bullet \circ c_ M^\bullet $ are homotopic to multiplication by $a$.
Lemma 60.25.1. In the situation above there exists a map of complexes
such that $c_ M^\bullet \circ e_ M^\bullet $ and $e_ M^\bullet \circ c_ M^\bullet $ are homotopic to multiplication by $a$.
Proof. In this proof all tensor products are over $B$. Assumption (2) implies that
for all $i \geq 0$. A collection of additive generators for $M \otimes (\Omega ')^ i$ is formed by elements of the form $f \omega $ and elements of the form $f \text{d}z \wedge \eta $ where $f \in B'$, $\omega \in M \otimes \Omega ^ i$, and $\eta \in M \otimes \Omega ^{i - 1}$.
For $f \in B'$ we write
so that $\epsilon (f) \in B$ and $\epsilon '(f) \in \Omega $ by assumptions (6) and (7). We define $e_ M^\bullet $ by the rules $e^ i_ M(f\omega ) = \epsilon (f) \omega $ and $e^ i_ M(f \text{d}z \wedge \eta ) = \epsilon '(f) \wedge \eta $. We will see below that the collection of maps $e^ i_ M$ is a map of complexes.
We define
by the rules $h^ i(f \omega ) = 0$ and $h^ i(f \text{d}z \wedge \eta ) = \theta (f) \eta $ for elements as above. We claim that
Note that multiplication by $a$ is a map of complexes by (1). Hence, since $c_ M^\bullet $ is an injective map of complexes by assumption (5), we conclude that $e_ M^\bullet $ is a map of complexes. To prove the claim we compute
The second equality because $\text{d}z$ does not occur in $\nabla (\omega )$ and the third equality by assumption (6). Similarly, we have
The second equality because $\text{d}(f) \wedge \text{d}z \wedge \eta = - \text{d}z \wedge \text{d}_1(f) \wedge \eta $. The fourth equality by assumption (4). On the other hand it is immediate from the definitions that $e^ i_ M(c^ i_ M(\omega )) = \epsilon (1) \omega = a \omega $. This proves the lemma. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: