The Stacks project

Lemma 80.12.3. Denote the common underlying category of $\mathit{Sch}_{fppf}$ and $\mathit{Sch}_{\acute{e}tale}$ by $\mathit{Sch}_\alpha $ (see Topologies, Remark 34.11.1). Let $S$ be an object of $\mathit{Sch}_\alpha $.

\[ F : (\mathit{Sch}_\alpha /S)^{opp} \longrightarrow \textit{Sets} \]

be a presheaf with the following properties:

  1. $F$ is a sheaf for the étale topology,

  2. the diagonal $\Delta : F \to F \times F$ is representable by algebraic spaces, and

  3. there exists $U \in \mathop{\mathrm{Ob}}\nolimits (\mathit{Sch}_\alpha /S)$ and $U \to F$ which is surjective and smooth.

Then $F$ is an algebraic space in the sense of Algebraic Spaces, Definition 65.6.1.

Proof. The proof mirrors the proof of Lemma 80.12.1. Let $R = U \times _ F U$. By (2) the presheaf $R$ is an algebraic space and by (3) the projections $R \to U$ are smooth and surjective. Denote $(U, R, s, t, c)$ the groupoid associated to the equivalence relation $j : R \to U \times _ S U$ (see Groupoids in Spaces, Lemma 78.11.3). By Theorem 80.10.1 we see that $X = U/R$ (quotient in the fppf-topology) is an algebraic space. Using that the smooth topology and the étale topology have the same sheaves (by More on Morphisms, Lemma 37.38.7) we see the map $U \to F$ identifies $F$ as the quotient of $U$ by $R$ for the smooth topology (details omitted). Thus we have morphisms (transformations of functors)

\[ U \to F \to X. \]

By Lemma 80.11.6 we see that $U \to X$ is surjective, flat and locally of finite presentation. By Groupoids in Spaces, Lemma 78.19.5 (and the fact that $j$ is a monomorphism) we have $R = U \times _ X U$. By Descent on Spaces, Lemma 74.11.26 we conclude that $U \to X$ is smooth and surjective (as the projections $R \to U$ are smooth and surjective and $\{ U \to X\} $ is an fppf covering). Hence for any scheme $T$ and morphism $T \to X$ the fibre product $T \times _ X U$ is an algebraic space surjective and smooth over $T$. Choose a scheme $V$ and a surjective étale morphism $V \to T \times _ X U$. Then $\{ V \to T\} $ is a smooth covering such that $V \to T \to X$ lifts to a morphism $V \to U$. This proves that $U \to X$ is surjective as a map of sheaves in the smooth topology. It follows that $F \to X$ is surjective as a map of sheaves in the smooth topology. On the other hand, the map $F \to X$ is injective (as a map of presheaves) since $R = U \times _ X U$. It follows that $F \to X$ is an isomorphism of smooth ($=$ étale) sheaves, see Sites, Lemma 7.11.2 which concludes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07WF. Beware of the difference between the letter 'O' and the digit '0'.