Lemma 98.21.1. Let S be a scheme. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism of categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let
be a commutative diagram of S-algebras. Let x be an object of \mathcal{X} over \mathop{\mathrm{Spec}}(A), let y be an object of \mathcal{Y} over \mathop{\mathrm{Spec}}(B), and let \phi : f(x)|_{\mathop{\mathrm{Spec}}(B)} \to y be a morphism of \mathcal{Y} over \mathop{\mathrm{Spec}}(B). Then there is a canonical functor
of categories of lifts induced by f and \phi . The construction is compatible with compositions of 1-morphisms of categories fibred in groupoids in an obvious manner.
Comments (0)