Lemma 10.70.2. Let $R$ be a ring, $I \subset R$ an ideal, and $a \in I$. Let $R' = R[\frac{I}{a}]$ be the affine blowup algebra. Then
the image of $a$ in $R'$ is a nonzerodivisor,
$IR' = aR'$, and
$(R')_ a = R_ a$.
Lemma 10.70.2. Let $R$ be a ring, $I \subset R$ an ideal, and $a \in I$. Let $R' = R[\frac{I}{a}]$ be the affine blowup algebra. Then
the image of $a$ in $R'$ is a nonzerodivisor,
$IR' = aR'$, and
$(R')_ a = R_ a$.
Proof. Immediate from the description of $R[\frac{I}{a}]$ above. $\square$
Comments (0)
There are also: