Lemma 115.14.1. Let $S = \mathop{\mathrm{Spec}}(R)$ be an affine scheme. Let $X$ be an algebraic space over $S$. Let $q_ i : \mathcal{F} \to \mathcal{Q}_ i$, $i = 1, 2$ be surjective maps of quasi-coherent $\mathcal{O}_ X$-modules. Assume $\mathcal{Q}_1$ flat over $S$. Let $T \to S$ be a quasi-compact morphism of schemes such that there exists a factorization
Then exists a closed subscheme $Z \subset S$ such that (a) $T \to S$ factors through $Z$ and (b) $q_{1, Z}$ factors through $q_{2, Z}$. If $\mathop{\mathrm{Ker}}(q_2)$ is a finite type $\mathcal{O}_ X$-module and $X$ quasi-compact, then we can take $Z \to S$ of finite presentation.
Comments (0)