Lemma 7.11.3. Let $\mathcal{C}$ be a site. Let $\mathcal{F} \to \mathcal{G}$ be a surjection of sheaves of sets. Then the diagram

represents $\mathcal{G}$ as a coequalizer.

Lemma 7.11.3. Let $\mathcal{C}$ be a site. Let $\mathcal{F} \to \mathcal{G}$ be a surjection of sheaves of sets. Then the diagram

\[ \xymatrix{ \mathcal{F} \times _\mathcal {G} \mathcal{F} \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{F} \ar[r] & \mathcal{G}} \]

represents $\mathcal{G}$ as a coequalizer.

**Proof.**
Let $\mathcal{H}$ be a sheaf of sets and let $\varphi : \mathcal{F} \to \mathcal{H}$ be a map of sheaves equalizing the two maps $\mathcal{F} \times _\mathcal {G} \mathcal{F} \to \mathcal{F}$. Let $\mathcal{G}' \subset \mathcal{G}$ be the presheaf image of the map $\mathcal{F} \to \mathcal{G}$. As the product $\mathcal{F} \times _\mathcal {G} \mathcal{F}$ may be computed in the category of presheaves we see that it is equal to the presheaf product $\mathcal{F} \times _{\mathcal{G}'} \mathcal{F}$. Hence $\varphi $ induces a unique map of presheaves $\psi ' : \mathcal{G}' \to \mathcal{H}$. Since $\mathcal{G}$ is the sheafification of $\mathcal{G}'$ by Lemma 7.11.2 we conclude that $\psi '$ extends uniquely to a map of sheaves $\psi : \mathcal{G} \to \mathcal{H}$. We omit the verification that $\varphi $ is equal to the composition of $\psi $ and the given map.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)