Lemma 27.22.3. Let n \geq 1. There is a canonical isomorphism \mathbf{G}(n, n + 1) = \mathbf{P}^ n_\mathbf {Z}.
Proof. According to Lemma 27.13.1 the scheme \mathbf{P}^ n_\mathbf {Z} represents the functor which assigns to a scheme S the set of isomorphisms classes of pairs (\mathcal{L}, (s_0, \ldots , s_ n)) consisting of an invertible module \mathcal{L} and an (n + 1)-tuple of global sections generating \mathcal{L}. Given such a pair we obtain a quotient
Conversely, given an element q : \mathcal{O}_ S^{\oplus n + 1} \to \mathcal{Q} of G(n, n + 1)(S) we obtain such a pair, namely (\mathcal{Q}, (q(e_1), \ldots , q(e_{n + 1}))). Here e_ i, i = 1, \ldots , n + 1 are the standard generating sections of the free module \mathcal{O}_ S^{\oplus n + 1}. We omit the verification that these constructions define mutually inverse transformations of functors. \square
Comments (0)
There are also: