\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

The Stacks project

26.22 Grassmannians

In this section we introduce the standard Grassmannian functors and we show that they are represented by schemes. Pick integers $k$, $n$ with $0 < k < n$. We will construct a functor

26.22.0.1
\begin{equation} \label{constructions-equation-gkn} G(k, n) : \mathit{Sch}\longrightarrow \textit{Sets} \end{equation}

which will loosely speaking parametrize $k$-dimensional subspaces of $n$-space. However, for technical reasons it is more convenient to parametrize $(n - k)$-dimensional quotients and this is what we will do.

More precisely, $G(k, n)$ associates to a scheme $S$ the set $G(k, n)(S)$ of isomorphism classes of surjections

\[ q : \mathcal{O}_ S^{\oplus n} \longrightarrow \mathcal{Q} \]

where $\mathcal{Q}$ is a finite locally free $\mathcal{O}_ S$-module of rank $n - k$. Note that this is indeed a set, for example by Modules, Lemma 17.9.8 or by the observation that the isomorphism class of the surjection $q$ is determined by the kernel of $q$ (and given a sheaf there is a set of subsheaves). Given a morphism of schemes $f : T \to S$ we let $G(k, n)(f) : G(k, n)(S) \to G(k, n)(T)$ which sends the isomorphism class of $q : \mathcal{O}_ S^{\oplus n} \longrightarrow \mathcal{Q}$ to the isomorphism class of $f^*q : \mathcal{O}_ T^{\oplus n} \longrightarrow f^*\mathcal{Q}$. This makes sense since (1) $f^*\mathcal{O}_ S = \mathcal{O}_ T$, (2) $f^*$ is additive, (3) $f^*$ preserves locally free modules (Modules, Lemma 17.14.3), and (4) $f^*$ is right exact (Modules, Lemma 17.3.3).

Proof. Set $F = G(k, n)$. To prove the lemma we will use the criterion of Schemes, Lemma 25.15.4. The reason $F$ satisfies the sheaf property for the Zariski topology is that we can glue sheaves, see Sheaves, Section 6.33 (some details omitted).

The family of subfunctors $F_ i$. Let $I$ be the set of subsets of $\{ 1, \ldots , n\} $ of cardinality $n - k$. Given a scheme $S$ and $j \in \{ 1, \ldots , n\} $ we denote $e_ j$ the global section

\[ e_ j = (0, \ldots , 0, 1, 0, \ldots , 0)\quad (1\text{ in }j\text{th spot}) \]

of $\mathcal{O}_ S^{\oplus n}$. Of course these sections freely generate $\mathcal{O}_ S^{\oplus n}$. Similarly, for $j \in \{ 1, \ldots , n - k\} $ we denote $f_ j$ the global section of $\mathcal{O}_ S^{\oplus n - k}$ which is zero in all summands except the $j$th where we put a $1$. For $i \in I$ we let

\[ s_ i : \mathcal{O}_ S^{\oplus n - k} \longrightarrow \mathcal{O}_ S^{\oplus n} \]

which is the direct sum of the coprojections $\mathcal{O}_ S \to \mathcal{O}_ S^{\oplus n}$ corresponding to elements of $i$. More precisely, if $i = \{ i_1, \ldots , i_{n - k}\} $ with $i_1 < i_2 < \ldots < i_{n - k}$ then $s_ i$ maps $f_ j$ to $e_{i_ j}$ for $j \in \{ 1, \ldots , n - k\} $. With this notation we can set

\[ F_ i(S) = \{ q : \mathcal{O}_ S^{\oplus n} \to \mathcal{Q} \in F(S) \mid q \circ s_ i \text{ is surjective}\} \subset F(S) \]

Given a morphism $f : T \to S$ of schemes the pullback $f^*s_ i$ is the corresponding map over $T$. Since $f^*$ is right exact (Modules, Lemma 17.3.3) we conclude that $F_ i$ is a subfunctor of $F$.

Representability of $F_ i$. To prove this we may assume (after renumbering) that $i = \{ 1, \ldots , n - k\} $. This means $s_ i$ is the inclusion of the first $n - k$ summands. Observe that if $q \circ s_ i$ is surjective, then $q \circ s_ i$ is an isomorphism as a surjective map between finite locally free modules of the same rank (Modules, Lemma 17.14.5). Thus if $q : \mathcal{O}_ S^{\oplus n} \to \mathcal{Q}$ is an element of $F_ i(S)$, then we can use $q \circ s_ i$ to identify $\mathcal{Q}$ with $\mathcal{O}_ S^{\oplus n - k}$. After doing so we obtain

\[ q : \mathcal{O}_ S^{\oplus n} \longrightarrow \mathcal{O}_ S^{\oplus n - k} \]

mapping $e_ j$ to $f_ j$ (notation as above) for $j = 1, \ldots , n - k$. To determine $q$ completely we have to fix the images $q(e_{n - k + 1}), \ldots , q(e_ n)$ in $\Gamma (S, \mathcal{O}_ S^{\oplus n - k})$. It follows that $F_ i$ is isomorphic to the functor

\[ S \longmapsto \prod \nolimits _{j = n - k + 1, \ldots , n} \Gamma (S, \mathcal{O}_ S^{\oplus n - k}) \]

This functor is isomorphic to the $k(n - k)$-fold self product of the functor $S \mapsto \Gamma (S, \mathcal{O}_ S)$. By Schemes, Example 25.15.2 the latter is representable by $\mathbf{A}^1_\mathbf {Z}$. It follows $F_ i$ is representable by $\mathbf{A}^{k(n - k)}_\mathbf {Z}$ since fibred product over $\mathop{\mathrm{Spec}}(\mathbf{Z})$ is the product in the category of schemes.

The inclusion $F_ i \subset F$ is representable by open immersions. Let $S$ be a scheme and let $q : \mathcal{O}_ S^{\oplus n} \to \mathcal{Q}$ be an element of $F(S)$. By Modules, Lemma 17.9.4. the set $U_ i = \{ s \in S \mid (q \circ s_ i)_ s\text{ surjective}\} $ is open in $S$. Since $\mathcal{O}_{S, s}$ is a local ring and $\mathcal{Q}_ s$ a finite $\mathcal{O}_{S, s}$-module by Nakayama's lemma (Algebra, Lemma 10.19.1) we have

\[ s \in U_ i \Leftrightarrow \left( \text{the map } \kappa (s)^{\oplus n - k} \to \mathcal{Q}_ s/\mathfrak m_ s\mathcal{Q}_ s \text{ induced by } (q \circ s_ i)_ s \text{ is surjective} \right) \]

Let $f : T \to S$ be a morphism of schemes and let $t \in T$ be a point mapping to $s \in S$. We have $(f^*\mathcal{Q})_ t = \mathcal{Q}_ s \otimes _{\mathcal{O}_{S, s}} \mathcal{O}_{T, t}$ (Sheaves, Lemma 6.26.4) and so on. Thus the map

\[ \kappa (t)^{\oplus n - k} \to (f^*\mathcal{Q})_ t/\mathfrak m_ t(f^*\mathcal{Q})_ t \]

induced by $(f^*q \circ f^*s_ i)_ t$ is the base change of the map $\kappa (s)^{\oplus n - k} \to \mathcal{Q}_ s/\mathfrak m_ s\mathcal{Q}_ s$ above by the field extension $\kappa (s) \subset \kappa (t)$. It follows that $s \in U_ i$ if and only if $t$ is in the corresponding open for $f^*q$. In particular $T \to S$ factors through $U_ i$ if and only if $f^*q \in F_ i(T)$ as desired.

The collection $F_ i$, $i \in I$ covers $F$. Let $q : \mathcal{O}_ S^{\oplus n} \to \mathcal{Q}$ be an element of $F(S)$. We have to show that for every point $s$ of $S$ there exists an $i \in I$ such that $s_ i$ is surjective in a neighbourhood of $s$. Thus we have to show that one of the compositions

\[ \kappa (s)^{\oplus n - k} \xrightarrow {s_ i} \kappa (s)^{\oplus n} \rightarrow \mathcal{Q}_ s/\mathfrak m_ s\mathcal{Q}_ s \]

is surjective (see previous paragraph). As $\mathcal{Q}_ s/\mathfrak m_ s\mathcal{Q}_ s$ is a vector space of dimension $n - k$ this follows from the theory of vector spaces. $\square$

Definition 26.22.2. Let $0 < k < n$. The scheme $\mathbf{G}(k, n)$ representing the functor $G(k, n)$ is called Grassmannian over $\mathbf{Z}$. Its base change $\mathbf{G}(k, n)_ S$ to a scheme $S$ is called Grassmannian over $S$. If $R$ is a ring the base change to $\mathop{\mathrm{Spec}}(R)$ is denoted $\mathbf{G}(k, n)_ R$ and called Grassmannian over $R$.

The definition makes sense as we've shown in Lemma 26.22.1 that these functors are indeed representable.

Lemma 26.22.3. Let $n \geq 1$. There is a canonical isomorphism $\mathbf{G}(n, n + 1) = \mathbf{P}^ n_\mathbf {Z}$.

Proof. According to Lemma 26.13.1 the scheme $\mathbf{P}^ n_\mathbf {Z}$ represents the functor which assigns to a scheme $S$ the set of isomorphisms classes of pairs $(\mathcal{L}, (s_0, \ldots , s_ n))$ consisting of an invertible module $\mathcal{L}$ and an $(n + 1)$-tuple of global sections generating $\mathcal{L}$. Given such a pair we obtain a quotient

\[ \mathcal{O}_ S^{\oplus n + 1} \longrightarrow \mathcal{L},\quad (h_0, \ldots , h_ n) \longmapsto \sum h_ i s_ i. \]

Conversely, given an element $q : \mathcal{O}_ S^{\oplus n + 1} \to \mathcal{Q}$ of $G(n, n + 1)(S)$ we obtain such a pair, namely $(\mathcal{Q}, (q(e_1), \ldots , q(e_{n + 1})))$. Here $e_ i$, $i = 1, \ldots , n + 1$ are the standard generating sections of the free module $\mathcal{O}_ S^{\oplus n + 1}$. We omit the verification that these constructions define mutually inverse transformations of functors. $\square$


Comments (2)

Comment #3012 by Jize YU on

I suppose there might be a minor typo in the definition of . The element should be defined for , where appears in the -th position.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 089R. Beware of the difference between the letter 'O' and the digit '0'.