Lemma 17.9.4. Let $X$ be a ringed space. Let $\varphi : \mathcal{G} \to \mathcal{F}$ be a homomorphism of $\mathcal{O}_ X$-modules. Let $x \in X$. Assume $\mathcal{F}$ of finite type and the map on stalks $\varphi _ x : \mathcal{G}_ x \to \mathcal{F}_ x$ surjective. Then there exists an open neighbourhood $x \in U \subset X$ such that $\varphi |_ U$ is surjective.
Proof. Choose an open neighbourhood $U \subset X$ of $x$ such that $\mathcal{F}$ is generated by $s_1, \ldots , s_ n \in \mathcal{F}(U)$ over $U$. By assumption of surjectivity of $\varphi _ x$, after shrinking $U$ we may assume that $s_ i = \varphi (t_ i)$ for some $t_ i \in \mathcal{G}(U)$. Then $U$ works. $\square$
Comments (3)
Comment #583 by Anfang on
Comment #596 by Johan on
Comment #1816 by Keenan Kidwell on
There are also: