Lemma 17.14.3. Let f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. If \mathcal{G} is a locally free \mathcal{O}_ Y-module, then f^*\mathcal{G} is a locally free \mathcal{O}_ X-module.
Proof. Omitted. \square
Lemma 17.14.3. Let f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. If \mathcal{G} is a locally free \mathcal{O}_ Y-module, then f^*\mathcal{G} is a locally free \mathcal{O}_ X-module.
Proof. Omitted. \square
Comments (0)