The Stacks project

Lemma 33.35.12. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}(m)$ is globally generated.

Proof. For all $d \gg 0$ the sheaf $\mathcal{F}(d)$ is globally generated. This follows for example from the first part of Cohomology of Schemes, Lemma 30.14.1. Pick $d \geq m$ such that $\mathcal{F}(d)$ is globally generated. Choose a basis $f_1, \ldots , f_ r \in H^0(\mathbf{P}^ n_ k, \mathcal{F})$. By Lemma 33.35.11 every element $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(d))$ can be written as $f = \sum P_ if_ i$ for some $P_ i \in k[T_0, \ldots , T_ n]$ homogeneous of degree $d - m$. Since the sections $f$ generate $\mathcal{F}(d)$ it follows that the sections $f_ i$ generate $\mathcal{F}(m)$. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 33.35: Coherent sheaves on projective space

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08A8. Beware of the difference between the letter 'O' and the digit '0'.