Lemma 33.35.12. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}(m)$ is globally generated.
Proof. For all $d \gg 0$ the sheaf $\mathcal{F}(d)$ is globally generated. This follows for example from the first part of Cohomology of Schemes, Lemma 30.14.1. Pick $d \geq m$ such that $\mathcal{F}(d)$ is globally generated. Choose a basis $f_1, \ldots , f_ r \in H^0(\mathbf{P}^ n_ k, \mathcal{F})$. By Lemma 33.35.11 every element $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(d))$ can be written as $f = \sum P_ if_ i$ for some $P_ i \in k[T_0, \ldots , T_ n]$ homogeneous of degree $d - m$. Since the sections $f$ generate $\mathcal{F}(d)$ it follows that the sections $f_ i$ generate $\mathcal{F}(m)$. $\square$
Comments (0)
There are also: