Lemma 33.33.2. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of coherent modules on $X$. Then

\[ \chi (X, \mathcal{F}_2) = \chi (X, \mathcal{F}_1) + \chi (X, \mathcal{F}_3) \]

**Proof.**
Consider the long exact sequence of cohomology

\[ 0 \to H^0(X, \mathcal{F}_1) \to H^0(X, \mathcal{F}_2) \to H^0(X, \mathcal{F}_3) \to H^1(X, \mathcal{F}_1) \to \ldots \]

associated to the short exact sequence of the lemma. The rank-nullity theorem in linear algebra shows that

\[ 0 = \dim H^0(X, \mathcal{F}_1) - \dim H^0(X, \mathcal{F}_2) + \dim H^0(X, \mathcal{F}_3) - \dim H^1(X, \mathcal{F}_1) + \ldots \]

This immediately implies the lemma. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)