The Stacks project

Lemma 68.22.4. In Situation 68.22.1. Fix $p \geq 0$.

  1. There exists a $c_1 \geq 0$ such that for all $n \geq c_1$ we have

    \[ \mathop{\mathrm{Ker}}( H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F}) ) \subset I^{n - c_1}H^ p(X, \mathcal{F}). \]
  2. The inverse system

    \[ \left(H^ p(X, \mathcal{F}/I^ n\mathcal{F})\right)_{n \in \mathbf{N}} \]

    satisfies the Mittag-Leffler condition (see Homology, Definition 12.31.2).

  3. In fact for any $p$ and $n$ there exists a $c_2(n) \geq n$ such that

    \[ \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}/I^ k\mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) = \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) \]

    for all $k \geq c_2(n)$.

Proof. Let $c_1 = \max \{ c_ p, c_{p + 1}\} $, where $c_ p, c_{p +1}$ are the integers found in Lemma 68.22.3 for $H^ p$ and $H^{p + 1}$. We will use this constant in the proofs of (1), (2) and (3).

Let us prove part (1). Consider the short exact sequence

\[ 0 \to I^ n\mathcal{F} \to \mathcal{F} \to \mathcal{F}/I^ n\mathcal{F} \to 0 \]

From the long exact cohomology sequence we see that

\[ \mathop{\mathrm{Ker}}( H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F}) ) = \mathop{\mathrm{Im}}( H^ p(X, I^ n\mathcal{F}) \to H^ p(X, \mathcal{F}) ) \]

Hence by our choice of $c_1$ we see that this is contained in $I^{n - c_1}H^ p(X, \mathcal{F})$ for $n \geq c_1$.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix an $n$ throughout the rest of the proof. Consider the commutative diagram

\[ \xymatrix{ 0 \ar[r] & I^ n\mathcal{F} \ar[r] & \mathcal{F} \ar[r] & \mathcal{F}/I^ n\mathcal{F} \ar[r] & 0 \\ 0 \ar[r] & I^{n + m}\mathcal{F} \ar[r] \ar[u] & \mathcal{F} \ar[r] \ar[u] & \mathcal{F}/I^{n + m}\mathcal{F} \ar[r] \ar[u] & 0 } \]

This gives rise to the following commutative diagram

\[ \xymatrix{ H^ p(X, I^ n\mathcal{F}) \ar[r] & H^ p(X, \mathcal{F}) \ar[r] & H^ p(X, \mathcal{F}/I^ n\mathcal{F}) \ar[r]_\delta & H^{p + 1}(X, I^ n\mathcal{F}) \\ H^ p(X, I^{n + m}\mathcal{F}) \ar[r] \ar[u] & H^ p(X, \mathcal{F}) \ar[r] \ar[u]^1 & H^ p(X, \mathcal{F}/I^{n + m}\mathcal{F}) \ar[r] \ar[u] & H^{p + 1}(X, I^{n + m}\mathcal{F}) \ar[u]^ a } \]

If $m \geq c_1$ we see that the image of $a$ is contained in $I^{m - c_1} H^{p + 1}(X, I^ n\mathcal{F})$. By the Artin-Rees lemma (see Algebra, Lemma 10.51.3) there exists an integer $c_3(n)$ such that

\[ I^ N H^{p + 1}(X, I^ n\mathcal{F}) \cap \mathop{\mathrm{Im}}(\delta ) \subset \delta \left(I^{N - c_3(n)}H^ p(X, \mathcal{F}/I^ n\mathcal{F})\right) \]

for all $N \geq c_3(n)$. As $H^ p(X, \mathcal{F}/I^ n\mathcal{F})$ is annihilated by $I^ n$, we see that if $m \geq c_3(n) + c_1 + n$, then

\[ \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}/I^{n + m}\mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) = \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) \]

In other words, part (3) holds with $c_2(n) = c_3(n) + c_1 + n$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08AY. Beware of the difference between the letter 'O' and the digit '0'.