The Stacks project

Lemma 20.40.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{U} : X = \bigcup _{i \in I} U_ i$ be a finite open covering. For a complex $\mathcal{F}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical map

\[ \text{Tot}(\check{\mathcal{C}}^\bullet _{alt}(\mathcal{U}, \mathcal{F}^\bullet )) \longrightarrow R\Gamma (X, \mathcal{F}^\bullet ) \]

functorial in $\mathcal{F}^\bullet $ and compatible with (20.40.0.1).

Proof. Let ${\mathcal I}^\bullet $ be a K-injective complex whose terms are injective $\mathcal{O}_ X$-modules. The map (20.40.0.1) for $\mathcal{I}^\bullet $ is a map $\Gamma (X, {\mathcal I}^\bullet ) \to \text{Tot}(\check{\mathcal{C}}^\bullet _{alt}({\mathcal U}, {\mathcal I}^\bullet ))$. This is a quasi-isomorphism of complexes of abelian groups as follows from Homology, Lemma 12.25.4 applied to the double complex $\check{\mathcal{C}}^\bullet _{alt}({\mathcal U}, {\mathcal I}^\bullet )$ using Lemmas 20.11.1 and 20.23.6. Suppose ${\mathcal F}^\bullet \to {\mathcal I}^\bullet $ is a quasi-isomorphism of ${\mathcal F}^\bullet $ into a K-injective complex whose terms are injectives (Injectives, Theorem 19.12.6). Since $R\Gamma (X, {\mathcal F}^\bullet )$ is represented by the complex $\Gamma (X, {\mathcal I}^\bullet )$ we obtain the map of the lemma using

\[ \text{Tot}(\check{\mathcal{C}}^\bullet _{alt}({\mathcal U}, {\mathcal F}^\bullet )) \longrightarrow \text{Tot}(\check{\mathcal{C}}^\bullet _{alt}({\mathcal U}, {\mathcal I}^\bullet )). \]

We omit the verification of functoriality and compatibilities. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08C1. Beware of the difference between the letter 'O' and the digit '0'.