Lemma 20.48.2. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{E}^\bullet be a bounded above complex of flat \mathcal{O}_ X-modules with tor-amplitude in [a, b]. Then \mathop{\mathrm{Coker}}(d_{\mathcal{E}^\bullet }^{a - 1}) is a flat \mathcal{O}_ X-module.
Proof. As \mathcal{E}^\bullet is a bounded above complex of flat modules we see that \mathcal{E}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{F} = \mathcal{E}^\bullet \otimes _{\mathcal{O}_ X}^{\mathbf{L}} \mathcal{F} for any \mathcal{O}_ X-module \mathcal{F}. Hence for every \mathcal{O}_ X-module \mathcal{F} the sequence
is exact in the middle. Since \mathcal{E}^{a - 2} \to \mathcal{E}^{a - 1} \to \mathcal{E}^ a \to \mathop{\mathrm{Coker}}(d^{a - 1}) \to 0 is a flat resolution this implies that \text{Tor}_1^{\mathcal{O}_ X}(\mathop{\mathrm{Coker}}(d^{a - 1}), \mathcal{F}) = 0 for all \mathcal{O}_ X-modules \mathcal{F}. This means that \mathop{\mathrm{Coker}}(d^{a - 1}) is flat, see Lemma 20.26.16. \square
Comments (0)