Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 20.33.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $j : U \to X$ be an open subspace. Let $T \subset X$ be a closed subset contained in $U$.

  1. If $E$ is an object of $D(\mathcal{O}_ X)$ whose cohomology sheaves are supported on $T$, then $E \to Rj_*(E|_ U)$ is an isomorphism.

  2. If $F$ is an object of $D(\mathcal{O}_ U)$ whose cohomology sheaves are supported on $T$, then $j_!F \to Rj_*F$ is an isomorphism.

Proof. Let $V = X \setminus T$ and $W = U \cap V$. Note that $X = U \cup V$ is an open covering of $X$. Denote $j_ W : W \to V$ the open immersion. Let $E$ be an object of $D(\mathcal{O}_ X)$ whose cohomology sheaves are supported on $T$. By Lemma 20.32.4 we have $(Rj_*E|_ U)|_ V = Rj_{W, *}(E|_ W) = 0$ because $E|_ W = 0$ by our assumption. On the other hand, $Rj_*(E|_ U)|_ U = E|_ U$. Thus (1) is clear. Let $F$ be an object of $D(\mathcal{O}_ U)$ whose cohomology sheaves are supported on $T$. By Lemma 20.32.4 we have $(Rj_*F)|_ V = Rj_{W, *}(F|_ W) = 0$ because $F|_ W = 0$ by our assumption. We also have $(j_!F)|_ V = j_{W!}(F|_ W) = 0$ (the first equality is immediate from the definition of extension by zero). Since both $(Rj_*F)|_ U = F$ and $(j_!F)|_ U = F$ we see that (2) holds. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.