The Stacks project

Lemma 18.16.6. Let $\mathcal{C}$ and $\mathcal{D}$ be sites. Let $g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ be the morphism of topoi associated to a continuous and cocontinuous functor $u : \mathcal{C} \to \mathcal{D}$.

  1. If $u$ has a left adjoint $w$, then $g_!$ agrees with $g_!^{\mathop{\mathit{Sh}}\nolimits }$ on underlying sheaves of sets and $g_!$ is exact.

  2. If in addition $w$ is cocontinuous, then $g_! = h^{-1}$ and $g^{-1} = h_*$ where $h : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is the morphism of topoi associated to $w$.

Proof. This Lemma is the analogue of Sites, Lemma 7.23.1. From Sites, Lemma 7.19.3 we see that the categories $\mathcal{I}_ V^ u$ have an initial object. Thus the underlying set of a colimit of a system of abelian groups over $(\mathcal{I}_ V^ u)^{opp}$ is the colimit of the underlying sets. Whence the agreement of $g_!^{\mathop{\mathit{Sh}}\nolimits }$ and $g_!$ by our construction of $g_!$ in Definition 18.16.1. The exactness and (2) follow immediately from the corresponding statements of Sites, Lemma 7.23.1. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 18.16: Exactness of lower shriek

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08P3. Beware of the difference between the letter 'O' and the digit '0'.