The Stacks project

Lemma 14.26.10. Let $\mathcal{C}$ be a category. Let $T$ be a set. For $t \in T$ let $X_ t$, $Y_ t$ be simplicial objects of $\mathcal{C}$. Assume $X = \prod _{t \in T} X_ t$ and $Y = \prod _{t \in T} Y_ t$ exist.

  1. If $X_ t$ and $Y_ t$ are homotopy equivalent for all $t \in T$ and $T$ is finite, then $X$ and $Y$ are homotopy equivalent.

For $t \in T$ let $a_ t, b_ t : X_ t \to Y_ t$ be morphisms. Set $a = \prod a_ t : X \to Y$ and $b = \prod b_ t : X \to Y$.

  1. If there exists a homotopy from $a_ t$ to $b_ t$ for all $t \in T$, then there exists a homotopy from $a$ to $b$.

  2. If $T$ is finite and $a_ t, b_ t : X_ t \to Y_ t$ for $t \in T$ are homotopic, then $a$ and $b$ are homotopic.

Proof. If $h_ t = (h_{t, n , i})$ is a homotopy from $a_ t$ to $b_ t$ (see Remark 14.26.4), then $h = (\prod _ t h_{t, n, i})$ is a homotopy from $\prod a_ t$ to $\prod b_ t$. This proves (2).

Proof of (3). Choose $t \in T$. There exists an integer $n \geq 0$ and a chain $a_ t = a_{t, 0}, a_{t, 1}, \ldots , a_{t, n} = b_ t$ such that for every $1 \leq i \leq n$ either there is a homotopy from $a_{t, i - 1}$ to $a_{t, i}$ or there is a homotopy from $a_{t, i}$ to $a_{t, i - 1}$. If $n = 0$, then we pick another $t$. (We're done if $a_ t = b_ t$ for all $t \in T$.) So assume $n > 0$. By Example 14.26.3 there are is a homotopy from $b_{t'}$ to $b_{t'}$ for all $t' \in T \setminus \{ t\} $. Thus by (2) there is a homotopy from $a_{t, n - 1} \times \prod _{t'} b_{t'}$ to $b$ or there is a homotopy from $b$ to $a_{t, n - 1} \times \prod _{t'} b_{t'}$. In this way we can decrease $n$ by $1$. This proves (3).

Part (1) follows from part (3) and the definitions. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08Q4. Beware of the difference between the letter 'O' and the digit '0'.