Lemma 92.3.4. Let $A_ i \to B_ i$ be a system of ring maps over a directed index set $I$. Then $\mathop{\mathrm{colim}}\nolimits L_{B_ i/A_ i} = L_{\mathop{\mathrm{colim}}\nolimits B_ i/\mathop{\mathrm{colim}}\nolimits A_ i}$.
Proof. This is true because the forgetful functor $V : A\textit{-Alg} \to \textit{Sets}$ and its adjoint $U : \textit{Sets} \to A\textit{-Alg}$ commute with filtered colimits. Moreover, the functor $B/A \mapsto \Omega _{B/A}$ does as well (Algebra, Lemma 10.131.5). $\square$
Comments (4)
Comment #2354 by Anthony on
Comment #2421 by Johan on
Comment #4353 by . on
Comment #4354 by Johan on
There are also: