The Stacks project

Lemma 89.15.1. In the situation above we have

  1. There is a canonical element $\xi \in \mathop{\mathrm{Ext}}\nolimits ^2_ B(L_{B/A}, N)$ whose vanishing is a sufficient and necessary condition for the existence of a solution to (89.15.0.1).

  2. If there exists a solution, then the set of isomorphism classes of solutions is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_ B(L_{B/A}, N)$.

  3. Given a solution $B'$, the set of automorphisms of $B'$ fitting into (89.15.0.1) is canonically isomorphic to $\mathop{\mathrm{Ext}}\nolimits ^0_ B(L_{B/A}, N)$.

Proof. Via the identifications $\mathop{N\! L}\nolimits _{B/A} = \tau _{\geq -1}L_{B/A}$ (Lemma 89.10.3) and $H^0(L_{B/A}) = \Omega _{B/A}$ (Lemma 89.4.5) we have seen parts (2) and (3) in Deformation Theory, Lemmas 88.2.1 and 88.2.3.

Proof of (1). We will use the results of Deformation Theory, Lemma 88.2.4 without further mention. Let $\alpha \in \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, I)$ be the element corresponding to the isomorphism class of $A'$. The existence of $B'$ corresponds to an element $\beta \in \mathop{\mathrm{Ext}}\nolimits _ B^1(\mathop{N\! L}\nolimits _{B/\mathbf{Z}}, N)$ which maps to the image of $\alpha $ in $\mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, N)$. Note that

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, N) = \mathop{\mathrm{Ext}}\nolimits ^1_ A(L_{A/\mathbf{Z}}, N) = \mathop{\mathrm{Ext}}\nolimits ^1_ B(L_{A/\mathbf{Z}} \otimes _ A^\mathbf {L} B, N) \]

and

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/\mathbf{Z}}, N) = \mathop{\mathrm{Ext}}\nolimits ^1_ B(L_{B/\mathbf{Z}}, N) \]

by Lemma 89.10.3. Since the distinguished triangle (89.7.0.1) for $\mathbf{Z} \to A \to B$ gives rise to a long exact sequence

\[ \ldots \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(L_{B/\mathbf{Z}}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(L_{A/\mathbf{Z}} \otimes _ A^\mathbf {L} B, N) \to \mathop{\mathrm{Ext}}\nolimits ^2_ B(L_{B/A}, N) \to \ldots \]

we obtain the result with $\xi $ the image of $\alpha $. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08SP. Beware of the difference between the letter 'O' and the digit '0'.