Lemma 18.35.2. In the situation above there is a canonical isomorphism $\mathop{N\! L}\nolimits (\alpha ) = \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ in $D(\mathcal{B})$.
Proof. Observe that $\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} = \mathop{N\! L}\nolimits (\text{id}_\mathcal {B})$. Thus it suffices to show that given two maps $\alpha _ i : \mathcal{E}_ i \to \mathcal{B}$ as above, there is a canonical quasi-isomorphism $\mathop{N\! L}\nolimits (\alpha _1) = \mathop{N\! L}\nolimits (\alpha _2)$ in $D(\mathcal{B})$. To see this set $\mathcal{E} = \mathcal{E}_1 \amalg \mathcal{E}_2$ and $\alpha = \alpha _1 \amalg \alpha _2 : \mathcal{E} \to \mathcal{B}$. Set $\mathcal{J}_ i = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}_ i] \to \mathcal{B})$ and $\mathcal{J} = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}] \to \mathcal{B})$. We obtain maps $\mathcal{A}[\mathcal{E}_ i] \to \mathcal{A}[\mathcal{E}]$ which send $\mathcal{J}_ i$ into $\mathcal{J}$. Thus we obtain canonical maps of complexes
and it suffices to show these maps are quasi-isomorphism. To see this we argue as follows. First, observe that $H^0(\mathop{N\! L}\nolimits (\alpha _ i)) = \Omega _{\mathcal{B}/\mathcal{A}}$ and $H^0(\mathop{N\! L}\nolimits (\alpha )) = \Omega _{\mathcal{B}/\mathcal{A}}$ by Lemma 18.33.8 hence the map is an isomorphism on cohomology sheaves in degree $0$. Similarly, we claim that $H^{-1}(\mathop{N\! L}\nolimits (\alpha _ i))$ and $H^{-1}(\mathop{N\! L}\nolimits (\alpha ))$ are the sheaves associated to the presheaf $U \mapsto H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)})$ where $H_1(L_{-/-})$ is as in Algebra, Definition 10.134.1. If the claim holds, then the proof is finished.
Proof of the claim. Let $\alpha : \mathcal{E} \to \mathcal{B}$ be as above. Let $\mathcal{B}' \subset \mathcal{B}$ be the subpresheaf of $\mathcal{A}$-algebras whose value on $U$ is the image of $\mathcal{A}(U)[\mathcal{E}(U)] \to \mathcal{B}(U)$. Let $\mathcal{I}'$ be the presheaf whose value on $U$ is the kernel of $\mathcal{A}(U)[\mathcal{E}(U)] \to \mathcal{B}(U)$. Then $\mathcal{I}$ is the sheafification of $\mathcal{I}'$ and $\mathcal{B}$ is the sheafification of $\mathcal{B}'$. Similarly, $H^{-1}(\mathop{N\! L}\nolimits (\alpha ))$ is the sheafification of the presheaf
by Lemma 18.33.4. By Algebra, Lemma 10.134.2 we conclude $H^{-1}(\mathop{N\! L}\nolimits (\alpha ))$ is the sheaf associated to the presheaf $U \mapsto H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)})$. Thus we have to show that the maps $H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)}) \to H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)})$ induce an isomorphism $\mathcal{H}'_1 \to \mathcal{H}_1$ of sheafifications.
Injectivity of $\mathcal{H}'_1 \to \mathcal{H}_1$. Let $f \in H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)})$ map to zero in $\mathcal{H}_1(U)$. To show: $f$ maps to zero in $\mathcal{H}'_1(U)$. The assumption means there is a covering $\{ U_ i \to U\} $ such that $f$ maps to zero in $H_1(L_{\mathcal{B}(U_ i)/\mathcal{A}(U_ i)})$ for all $i$. Replace $U$ by $U_ i$ to get to the point where $f$ maps to zero in $H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)})$. By Algebra, Lemma 10.134.9 we can find a finitely generated subalgebra $\mathcal{B}'(U) \subset B \subset \mathcal{B}(U)$ such that $f$ maps to zero in $H_1(L_{B/\mathcal{A}(U)})$. Since $\mathcal{B} = (\mathcal{B}')^\# $ we can find a covering $\{ U_ i \to U\} $ such that $B \to \mathcal{B}(U_ i)$ factors through $\mathcal{B}'(U_ i)$. Hence $f$ maps to zero in $H_1(L_{\mathcal{B}'(U_ i)/\mathcal{A}(U_ i)})$ as desired.
The surjectivity of $\mathcal{H}'_1 \to \mathcal{H}_1$ is proved in exactly the same way. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)