18.35 The naive cotangent complex
This section is the analogue of Algebra, Section 10.134 and Modules, Section 17.31. We advise the reader to read those sections first.
Let \mathcal{C} be a site. Let \mathcal{A} \to \mathcal{B} be a homomorphism of sheaves of rings on \mathcal{C}. In this section, for any sheaf of sets \mathcal{E} on \mathcal{C} we denote \mathcal{A}[\mathcal{E}] the sheafification of the presheaf U \mapsto \mathcal{A}(U)[\mathcal{E}(U)]. Here \mathcal{A}(U)[\mathcal{E}(U)] denotes the polynomial algebra over \mathcal{A}(U) whose variables correspond to the elements of \mathcal{E}(U). We denote [e] \in \mathcal{A}(U)[\mathcal{E}(U)] the variable corresponding to e \in \mathcal{E}(U). There is a canonical surjection of \mathcal{A}-algebras
18.35.0.1
\begin{equation} \label{sites-modules-equation-canonical-presentation} \mathcal{A}[\mathcal{B}] \longrightarrow \mathcal{B},\quad [b] \longmapsto b \end{equation}
whose kernel we denote \mathcal{I} \subset \mathcal{A}[\mathcal{B}]. It is a simple observation that \mathcal{I} is generated by the local sections [b][b'] - [bb'] and [a] - a. According to Lemma 18.33.8 there is a canonical map
18.35.0.2
\begin{equation} \label{sites-modules-equation-naive-cotangent-complex} \mathcal{I}/\mathcal{I}^2 \longrightarrow \Omega _{\mathcal{A}[\mathcal{B}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{B}]} \mathcal{B} \end{equation}
whose cokernel is canonically isomorphic to \Omega _{\mathcal{B}/\mathcal{A}}.
Definition 18.35.1. Let \mathcal{C} be a site. Let \mathcal{A} \to \mathcal{B} be a homomorphism of sheaves of rings on \mathcal{C}. The naive cotangent complex \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} is the chain complex (18.35.0.2)
\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} = \left(\mathcal{I}/\mathcal{I}^2 \longrightarrow \Omega _{\mathcal{A}[\mathcal{B}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{B}]} \mathcal{B}\right)
with \mathcal{I}/\mathcal{I}^2 placed in degree -1 and \Omega _{\mathcal{A}[\mathcal{B}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{B}]} \mathcal{B} placed in degree 0.
This construction satisfies a functoriality similar to that discussed in Lemma 18.33.7 for modules of differentials. Namely, given a commutative diagram
18.35.1.1
\begin{equation} \label{sites-modules-equation-commutative-square-sheaves} \vcenter { \xymatrix{ \mathcal{B} \ar[r] & \mathcal{B}' \\ \mathcal{A} \ar[u] \ar[r] & \mathcal{A}' \ar[u] } } \end{equation}
of sheaves of rings on \mathcal{C} there is a canonical \mathcal{B}-linear map of complexes
\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \longrightarrow \mathop{N\! L}\nolimits _{\mathcal{B}'/\mathcal{A}'}
Namely, the maps in the commutative diagram give rise to a canonical map \mathcal{A}[\mathcal{B}] \to \mathcal{A}'[\mathcal{B}'] which maps \mathcal{I} into \mathcal{I}' = \mathop{\mathrm{Ker}}(\mathcal{A}'[\mathcal{B}'] \to \mathcal{B}'). Thus a map \mathcal{I}/\mathcal{I}^2 \to \mathcal{I}'/(\mathcal{I}')^2 and a map between modules of differentials, which together give the desired map between the naive cotangent complexes.
We can choose a different presentation of \mathcal{B} as a quotient of a polynomial algebra over \mathcal{A} and still obtain the same object of D(\mathcal{B}). To explain this, suppose that \mathcal{E} is a sheaves of sets on \mathcal{C} and \alpha : \mathcal{E} \to \mathcal{B} a map of sheaves of sets. Then we obtain an \mathcal{A}-algebra homomorphism \mathcal{A}[\mathcal{E}] \to \mathcal{B}. Assume this map is surjective, and let \mathcal{J} \subset \mathcal{A}[\mathcal{E}] be the kernel. Set
\mathop{N\! L}\nolimits (\alpha ) = \left( \mathcal{J}/\mathcal{J}^2 \longrightarrow \Omega _{\mathcal{A}[\mathcal{E}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}]} \mathcal{B}\right)
Here is the result.
Lemma 18.35.2. In the situation above there is a canonical isomorphism \mathop{N\! L}\nolimits (\alpha ) = \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} in D(\mathcal{B}).
Proof.
Observe that \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} = \mathop{N\! L}\nolimits (\text{id}_\mathcal {B}). Thus it suffices to show that given two maps \alpha _ i : \mathcal{E}_ i \to \mathcal{B} as above, there is a canonical quasi-isomorphism \mathop{N\! L}\nolimits (\alpha _1) = \mathop{N\! L}\nolimits (\alpha _2) in D(\mathcal{B}). To see this set \mathcal{E} = \mathcal{E}_1 \amalg \mathcal{E}_2 and \alpha = \alpha _1 \amalg \alpha _2 : \mathcal{E} \to \mathcal{B}. Set \mathcal{J}_ i = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}_ i] \to \mathcal{B}) and \mathcal{J} = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}] \to \mathcal{B}). We obtain maps \mathcal{A}[\mathcal{E}_ i] \to \mathcal{A}[\mathcal{E}] which send \mathcal{J}_ i into \mathcal{J}. Thus we obtain canonical maps of complexes
\mathop{N\! L}\nolimits (\alpha _ i) \longrightarrow \mathop{N\! L}\nolimits (\alpha )
and it suffices to show these maps are quasi-isomorphism. To see this we argue as follows. First, observe that H^0(\mathop{N\! L}\nolimits (\alpha _ i)) = \Omega _{\mathcal{B}/\mathcal{A}} and H^0(\mathop{N\! L}\nolimits (\alpha )) = \Omega _{\mathcal{B}/\mathcal{A}} by Lemma 18.33.8 hence the map is an isomorphism on cohomology sheaves in degree 0. Similarly, we claim that H^{-1}(\mathop{N\! L}\nolimits (\alpha _ i)) and H^{-1}(\mathop{N\! L}\nolimits (\alpha )) are the sheaves associated to the presheaf U \mapsto H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)}) where H_1(L_{-/-}) is as in Algebra, Definition 10.134.1. If the claim holds, then the proof is finished.
Proof of the claim. Let \alpha : \mathcal{E} \to \mathcal{B} be as above. Let \mathcal{B}' \subset \mathcal{B} be the subpresheaf of \mathcal{A}-algebras whose value on U is the image of \mathcal{A}(U)[\mathcal{E}(U)] \to \mathcal{B}(U). Let \mathcal{I}' be the presheaf whose value on U is the kernel of \mathcal{A}(U)[\mathcal{E}(U)] \to \mathcal{B}(U). Then \mathcal{I} is the sheafification of \mathcal{I}' and \mathcal{B} is the sheafification of \mathcal{B}'. Similarly, H^{-1}(\mathop{N\! L}\nolimits (\alpha )) is the sheafification of the presheaf
U \longmapsto \mathop{\mathrm{Ker}}(\mathcal{I}'(U)/\mathcal{I}'(U)^2 \to \Omega _{\mathcal{A}(U)[\mathcal{E}(U)]/\mathcal{A}(U)} \otimes _{\mathcal{A}(U)[\mathcal{E}(U)]} \mathcal{B}'(U))
by Lemma 18.33.4. By Algebra, Lemma 10.134.2 we conclude H^{-1}(\mathop{N\! L}\nolimits (\alpha )) is the sheaf associated to the presheaf U \mapsto H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)}). Thus we have to show that the maps H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)}) \to H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)}) induce an isomorphism \mathcal{H}'_1 \to \mathcal{H}_1 of sheafifications.
Injectivity of \mathcal{H}'_1 \to \mathcal{H}_1. Let f \in H_1(L_{\mathcal{B}'(U)/\mathcal{A}(U)}) map to zero in \mathcal{H}_1(U). To show: f maps to zero in \mathcal{H}'_1(U). The assumption means there is a covering \{ U_ i \to U\} such that f maps to zero in H_1(L_{\mathcal{B}(U_ i)/\mathcal{A}(U_ i)}) for all i. Replace U by U_ i to get to the point where f maps to zero in H_1(L_{\mathcal{B}(U)/\mathcal{A}(U)}). By Algebra, Lemma 10.134.9 we can find a finitely generated subalgebra \mathcal{B}'(U) \subset B \subset \mathcal{B}(U) such that f maps to zero in H_1(L_{B/\mathcal{A}(U)}). Since \mathcal{B} = (\mathcal{B}')^\# we can find a covering \{ U_ i \to U\} such that B \to \mathcal{B}(U_ i) factors through \mathcal{B}'(U_ i). Hence f maps to zero in H_1(L_{\mathcal{B}'(U_ i)/\mathcal{A}(U_ i)}) as desired.
The surjectivity of \mathcal{H}'_1 \to \mathcal{H}_1 is proved in exactly the same way.
\square
Lemma 18.35.3. Let f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) be morphism of topoi. Let \mathcal{A} \to \mathcal{B} be a homomorphism of sheaves of rings on \mathcal{D}. Then f^{-1}\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} = \mathop{N\! L}\nolimits _{f^{-1}\mathcal{B}/f^{-1}\mathcal{A}}.
Proof.
Omitted. Hint: Use Lemma 18.33.5.
\square
The cotangent complex of a morphism of ringed topoi is defined in terms of the cotangent complex we defined above.
Definition 18.35.4. Let X = (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) and Y = (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') be ringed topoi. Let (f, f^\sharp ) : X \to Y be a morphism of ringed topoi. The naive cotangent complex \mathop{N\! L}\nolimits _ f = \mathop{N\! L}\nolimits _{X/Y} of the given morphism of ringed topoi is \mathop{N\! L}\nolimits _{\mathcal{O}/f^{-1}\mathcal{O}'}. We sometimes write \mathop{N\! L}\nolimits _{X/Y} = \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}'}.
Comments (0)