Definition 18.35.4. Let X = (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) and Y = (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') be ringed topoi. Let (f, f^\sharp ) : X \to Y be a morphism of ringed topoi. The naive cotangent complex \mathop{N\! L}\nolimits _ f = \mathop{N\! L}\nolimits _{X/Y} of the given morphism of ringed topoi is \mathop{N\! L}\nolimits _{\mathcal{O}/f^{-1}\mathcal{O}'}. We sometimes write \mathop{N\! L}\nolimits _{X/Y} = \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}'}.
Comments (0)