Lemma 92.20.4. Let f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. There is a canonical map L_{X/Y} \to \mathop{N\! L}\nolimits _{X/Y} which identifies the naive cotangent complex with the truncation \tau _{\geq -1}L_{X/Y}.
Proof. Special case of Lemma 92.18.10. \square
Comments (0)