The Stacks project

Example 35.4.7. For a ring $R$ and $f_1, \ldots , f_ n \in R$ generating the unit ideal, the morphism $R \to R_{f_1} \oplus \ldots \oplus R_{f_ n}$ is universally injective. Although this is immediate from Lemma 35.4.8, it is instructive to check it directly: we immediately reduce to the case where $R$ is local, in which case some $f_ i$ must be a unit and so the map $R \to R_{f_ i}$ is an isomorphism.

Comments (0)

There are also:

  • 4 comment(s) on Section 35.4: Descent for universally injective morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08WN. Beware of the difference between the letter 'O' and the digit '0'.